ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
LUMPING KINETICS OF HYDRODESULFURIZATION AND HYDRODENITROGENATION OF THE MIDDLE DISTILLATE FROM CHINESE SHALE OIL; pp. 517–535
PDF | doi: 10.3176/oil.2013.4.05

Authors
XUN TANG, SHUYUAN LI, CHANGTAO YUE, JILAI HE, JILI HOU
Abstract

The hydrogenation experiments of the middle distillate (MD) of Chinese Huadian shale oil were carried out in a bench-scale trickle-bed reactor using a commercial catalyst Ni-Mo-W/Al2O3 under various operating conditions. Three kinds of lumping kinetic models were developed in order to compare their capabilities to predict the concentrations of sulfur and nitrogen in hydrotreated oil samples. The results showed that three-lump and four-lump models can be reasonably used to describe hydrodesulfurization (HDS) and hydrodenitrogenation (HDN), respectively. The predictions made using lumping models agreed well with experimental data. The discrepancies between experimental and predicted data are smaller than 5%. The three-lump model for HDS and the four-lump model for HDN were also utilized for predicting reactive features and obtaining suitable operating conditions for HDS and HDN of the middle distillate (MD) of Huadian shale oil. The species and distribution of sulfur and nitrogen compounds were also investi­gated.

References

  1. Jialin Qian, Liang Yin. Oil Shale – Petroleum Alternative. China Petrochemical Press, Beijing, 2010.

  2. Siirde, A., Roos, I., Martins, A. Estimation of carbon emission factors for the Estonian shale oil industry. Oil Shale, 2011, 28(1S), 127–139.
http://dx.doi.org/10.3176/oil.2011.1S.05

  3. Weina Song, Yongli Dong, Limei Xue, Huixian Ding, Zhe Li, Guojiang Zhou. Hydrofluoric acid-based ultrasonic upgrading of oil shale and its structure characterization. Oil Shale, 2012, 29(4), 334–343.
http://dx.doi.org/10.3176/oil.2012.4.04

  4. Yue Ma, Shuyuan Li. The pyrolysis, extraction and kinetics of Buton oil sand bitumen. Fuel Process. Technol., 2012, 100, 11–15.
http://dx.doi.org/10.1016/j.fuproc.2012.03.001

  5. Cai Zeng, Sam Clayton, Hongwei Wu, Jun-ichiro Hayashi, and Chun-Zhu Li. Effects of dewatering on the pyrolysis and gasification reactivity of Victorian brown coal. Energ. Fuel., 2007, 21(2), 399–404.
http://dx.doi.org/10.1021/ef060404y

  6. Shuyuan Li. The developments of Chinese oil shale activities. Oil Shale, 2012, 29(2), 101–102.
http://dx.doi.org/10.3176/oil.2012.2.01

  7. Benyamna, A., Bennouna, C., Moreau, C., Geneste, P. Upgrading of distillate fractions of Timahdit Moroccan shale oil over a sulphided NiO-MoO3/γ-Al2O3 catalyst. Fuel, 1991, 70(7), 845–848.
http://dx.doi.org/10.1016/0016-2361(91)90193-E

  8. Hang Yu, Shuyuan Li, Guangzhou Jin. Hydrodesulfurization and hydro­denitro­genation of diesel distillate from Fushun shale oil. Oil Shale, 2010, 27(2), 126–134.
http://dx.doi.org/10.3176/oil.2010.2.03

  9. Holmes, S. A., Thompson, L. F. Nitrogen compound distributions in hydro­treated shale oil products from commercial-scale refining. Fuel, 1983, 62(6), 709–717.
http://dx.doi.org/10.1016/0016-2361(83)90312-5

10. Thompson, L. F., Holmes, S. A. Effect of multistage hydroprocessing on aromatic and nitrogen compositions of shale oil. Fuel, 1985, 64(1), 9–14.
http://dx.doi.org/10.1016/0016-2361(85)90269-8

11. Luik, H., Lindaru, E., Vink, N., Maripuu, L. Upgrading of Estonian shale oil distilla­tion fractions. 1. Hydrogenation of the “diesel fraction”. Oil Shale, 1999, 16(2), 141–148.

12. Luik, H., Vink, N., Lindaru, E., Maripuu, L. Upgrading of Estonian shale oil distillation fractions. 2. The effect of time and hydrogen pressure on the yield and composition of “diesel fraction” hydrogenation products. Oil Shale, 1999, 16(3), 249–256.

13. Luik, H., Maripuu, L., Vink, N., Lindaru, E. Upgrading of Estonian shale oil distillation fractions. 3. Hydrogenation of light mazute. Oil Shale, 1999, 16(4), 331–336.

14. Luik, H., Vink, N., Lindaru, E., Maripuu, L. Upgrading of Estonian shale oil distillation fractions. 4. The effect of time and hydrogen pressure on the yield and composition of light mazute hydrogenation products. Oil Shale, 1999, 16(4), 337–342.

15. Luik, H., Vink, N., Lindaru, E., Maripuu, L. Upgrading of Estonian shale oil distillation fractions. 5. Hydrogenation of heavy mazute. Oil Shale, 2000, 17(1), 25–30.

16. Luik, H., Luik, L., Krasulina, J., Riisalu, H. Upgrading Estonian shale oil bituminous fractions. In: 32nd Oil Shale Symposium, Colorado School of Mines, Golden, Colorado, October 15–19, 2012.

17. Landau, M. V., Herskowitz, M., Givoni, D., Laichter, S., Yitzhaki, D. Medium-severity hydrotreating and hydrocracking of Israeli shale oil. 1. Novel catalyst systems. Fuel, 1996, 75(7), 858–866.
http://dx.doi.org/10.1016/0016-2361(96)00017-8

18. Landau, M. V., Herskowitz, M., Givoni, D., Laichter, S., Yitzhaki, D. Medium severity hydrotreating and hydrocracking of Israeli shale oil – II. Testing of novel catalyst systems in a trickle bed reactor. Fuel, 1998, 77(1–2), 3–13.
http://dx.doi.org/10.1016/S0016-2361(97)00173-7

19. Landau, M. V., Herskowitz, M., Givoni, D., Laichter, S., Yitzhaki, D. Medium severity hydrotreating and hydrocracking of Israeli shale oil: III. Hydrocracking of hydrotreated shale oil and its atmospheric residue for full conversion to motor fuels. Fuel, 1998, 77(14), 1589–1597.
http://dx.doi.org/10.1016/S0016-2361(98)00080-5

20. Goelzer, A., Aarna, I. Progress towards installation of the Narva shale oil upgrader plant in Estonia. In: 30th Oil Shale Symposium, Colorado School of Mines, Golden, Colorado, October 18–22, 2010.

21. Williams, P. T., Chishti, H. M. Reaction of nitrogen and sulphur compounds during catalytic hydrotreatment of shale oil. Fuel, 2001, 80(7), 957–963.
http://dx.doi.org/10.1016/S0016-2361(00)00189-7

22. Landau, M. V. Deep hydrotreating of middle distillates from crude and shale oils. Catal. Today, 1997, 36(4), 393–429.
http://dx.doi.org/10.1016/S0920-5861(96)00233-7

23. Hang Yu, Shuyuan Li and Guangzhou Jin. Catalytic hydrotreating of the diesel distillate from Fushun shale oil for the production of clean fuel. Energ. Fuel., 2010, 24(8), 4419–4424.
http://dx.doi.org/10.1021/ef100531u

24. Mederos, F. S., Elizalde, I., Ancheyta, J. Steady-state and dynamic reactor models for hydrotreatment of oil fractions: A review. Catal. Rev.-Sci. Eng., 2009, 51(4), 485–607.
http://dx.doi.org/10.1080/01614940903048612

25. Sertić-Bionda, K., Gomzi, Z., Šarić, T. Testing of hydrodesulfurization process in small trickle-bed reactor. Chem. Eng. J., 2005, 106(2), 105–110.
http://dx.doi.org/10.1016/j.cej.2004.11.007

26. Harvey, T. G., Matheson, T. W., Pratt, K. C., Stanborough, M., S. Studies of the batch hydrotreatment of Rundle shale oil. Fuel, 1985, 64(7), 925–930.
http://dx.doi.org/10.1016/0016-2361(85)90145-0

27. Ho, T. C. Hydrodenitrogenation Catalysis. Catal. Rev.-Sci. Eng., 1988, 30(1), 117–160.
http://dx.doi.org/10.1080/01614948808078617

28. Weixiang Zhao, Dezhao Chen, Shangxu Hu. Differential fraction-based kinetic model for simulating hydrodesulfurization process of petroleum fraction. Comput. Chem., 2002, 26(2), 141–148.
http://dx.doi.org/10.1016/S0097-8485(01)00091-2

29. Rodriguez, M. A., Elizalde, I., Ancheyta, J. Comparison of kinetic and reactor models to simulate a trickle-bed bench-scale reactor for hydrodesulfurization of VGO. Fuel, 2012, 100, 91–99.
http://dx.doi.org/10.1016/j.fuel.2012.01.061

30. Farag, H., Mochida, I. A comparative kinetic study on ultra-deep hydro­desulfurization of pre-treated gas oil over nanosized MoS2, CoMo-sulfide, and commercial CoMo/Al2O3 catalysts. J. Colloid Interf. Sci., 2012, 372(1), 121–129.
http://dx.doi.org/10.1016/j.jcis.2012.01.019

31. Te, M., Fairbridge, C., Ring, Z. Various approaches in kinetics modeling of real feedstock hydrodesulfurization. Petrol. Sci. Technol., 2003, 21(1–2), 157–181.
http://dx.doi.org/10.1081/LFT-120016940

32. Fei Dai, Mingjie Gao, Chunshan Li, Shuguang Xiang, Suojiang Zhang. Detailed description of coal tar hydrogenation process using the kinetic lumping approach. Energ. Fuel., 2011, 25(11), 4878–4885.
http://dx.doi.org/10.1021/ef2011047

33. Holmes, S. A., Thompson, L. F. Nitrogen compound distributions in hydro­treated shale oil products from commercial-scale refining. Fuel, 1983, 62(6), 709–717.
http://dx.doi.org/10.1016/0016-2361(83)90312-5

34. Bett, G., Harvey, T. G., Matheson, T. W., Pratt, K. C. Determination of polar compounds in Rundle shale oil. Fuel, 1983, 62(12), 1445–1454.
http://dx.doi.org/10.1016/0016-2361(83)90113-8

35. Regtop, R. A., Crisp, P. T., Ellis, J. Chemical characterization of shale oil from Rundle, Queensland. Fuel, 1982, 61(2), 185–192.
http://dx.doi.org/10.1016/0016-2361(82)90233-2

36. Hongjun You, Chunming Xu, Jinsen Gao, Zhichang Liu, Pinxiang Yan. Nine lumped kinetic models of FCC gasoline under the aromatization reaction condi­tions. Catal. Commun., 2006, 7(8), 554–558.
http://dx.doi.org/10.1016/j.catcom.2006.01.016

37. Hang Yu, Shuyuan Li, Guangzhou Jin, Xun Tang. An analysis of the com­positions of nitrogen and oxygen compounds in diesel distillate from Huandian shale oil. Petroleum Processing and Petrochemical, 2011, 42(3), 88–92 (in Chinese).

Back to Issue