ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
RARE EARTH ELEMENT (REE) GEOCHEMISTRY AND GENESIS OF OIL SHALES AROUND DAĞHACILAR VILLAGE, GÖYNÜK-BOLU, TURKEY; pp. 419–440
PDF | doi: 10.3176/oil.2013.3.04

Authors
OKAY ÇİMEN, ŞÜKRÜ KOÇ, ALİ SARI
Abstract

The study area is located in the south of Dağhacılar village of Göynük town in Bolu Province, Turkey. This study is a pioneering work in Turkey on the genesis and environmental characteristics of oil shales and other shallow marine-type sedimentary rocks regarding their major and rare earth element contents. The abundances of SiO2, Al2O3, TiO2, K2O and Fe2O3 decrease in the following order: claystone > oil shale > marl. CaO and MgO abundances are ranked in the decreasing order as follows: marl > oil shale > claystone. These results reveal the presence of two different genetic groups – detrital and marine. The same groups were also established in the corre­lation studies of elements. TOT/C and TOC contents of rocks observe the following order: oil shale > marl > claystone, and as a result of variations in redox conditions they also vary in a wide range. Total carbon and total organic carbon are positively correlated with the group representing clays and negatively correlated with CaO, MgO and MnO. That is why TOT/C and TOC are associated with clays. The positive correlations between some major oxides (e.g. SiO2, Al2O3, Fe2O3, TiO2 and K2O) and REE might indicate that clays and iron oxy-hydroxyls play an important role in trans­portation and deposition processes. The only slight negative Ce and positive Eu anomalies and Ce/Ce* and Eu/Eu* values recorded in the depositional environment indicate low oxygenated and anaerobic (reducing) conditions.

References

  1. Taylor, S. R., McClennan, S. M. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford, 1985, 57–72.

  2. Schatzel, S. J., Stewart, B. W. Rare earth element sources and modification in the Lower Kittanning coal bed, Pennsylvania: implications for the origin of coal mineral matter and rare earth element exposure in underground mines. Int. J. Coal Geol., 2003, 54(3–4), 223–251.
http://dx.doi.org/10.1016/S0166-5162(03)00038-7

  3. Rantitsch, G., Melcher, F., Meisel, Th., Rainer, Th. Rare earth, major and trace elements in Jurassic manganese shales of the Northern Calcaeous Alps: hydro­thermal versus hydrogenous origin of stratiform manganese deposits. Miner. Petrol., 2003, 77(1–2), 109–127.
http://dx.doi.org/10.1007/s00710-002-0197-0

  4. Wang, W. F., Qin, Y., Sang, S. X., Zhu, Y. M., Wang, C. Y., Weiss, D. J. Geo­chemistry of rare earth elements in a marine influenced coal and its organic solvent extracts from the Antaibao mining district, Shanxi, China. Int. J. Coal Geol., 2008, 76(4), 309–317.
http://dx.doi.org/10.1016/j.coal.2008.08.012

  5. Kasper-Zubillaga, J. J., Acevedo-Vargas, B., Morton-Bermea, O. M., Ortiz-Zamora, G. Rare earth elements of the Altar Desert dune and coastal sands, Northwestern Mexico. Chem. Erde-Geochem., 2008, 68, 45–59.
http://dx.doi.org/10.1016/j.chemer.2006.05.001

  6. Zanin, Y. N., Eder, V. G., Zamirailova, A. G., Krasavchikov, V. O. Models of the REE distribution in the black shale Bazhenov Formation of the West Siberian marine basin, Russia. Chem. Erde-Geochem., 2010, 70(4), 363–376.
http://dx.doi.org/10.1016/j.chemer.2010.04.001

  7. Fu, X., Wang, J., Zeng, Y., Tan, F, He, J. Geochemistry and origin of rare earth elements (REEs) in the Shengli River oil shale, northern Tibet, China. Chem. Erde-Geochem., 2010, 71(1), 21–30.
http://dx.doi.org/10.1016/j.chemer.2010.07.003

  8. Haskin, L., Gehl, M. A. The rare-earth distribution in sediments. J. Geo­phys. Res., 1962, 67(6), 2537–2541.
http://dx.doi.org/10.1029/JZ067i006p02537

  9. Vine, J. D., Tourtelot, E. B. Geochemistry of black shales: a summary report. Econ. Geol., 1970, 65, 253–272.
http://dx.doi.org/10.2113/gsecongeo.65.3.253

10. Tait, L. The Character of Organic Matter and the Partitioning of Trace and Rare Earth Elements in Black Shales; Blondeau Formation, Chibougamau, Québec. Université du Québec a Chicoutimi, MSc Thesis, 1987, 1–494.

11. Huyck, H. L. O. When is a metalliferous black shale not a black shale? In: Metalliferous Black Shales and Related Ore Deposits – Proceedings, 1989 United States Working Group Meeting, International Geological Correlation Project 254. US Geological Survey Circular, 1991, 1058. 42–56.

12. Gavshin, V. M., Zakharov, V. A. ’’Bazhenovites’’ on the Norwegian con­tinental shelf. Soviet Geology and Geophysics, 1991, 32(1), 52–59.

13. Hannigan, R., Basu, A. R. Late diagenetic trace elements remobilization in organic-rich black shales of the Taconic Foreland Basin in Quebec, Ontario and New York. In: Shales and Mudstones II: Petrography, Petrophysics, Geo­chemistry, and Economic Geology (Schieber, J., Zimmerle, W., Sethi, P. S., eds.), E. Schweizerbart’sche Verlagsbuchhandlung (Nägel u. Obermiller), Stuttgart, 1998, 209–234.

14. Cruse, A. M., Lyons, T. W, Kidder, D. L. Rare-earth element behavior in phosphates and organic-rich host shales: an example from the Upper Carboniferous of Midcontinent North America. In Marine Authigenesis: From Global to Microbial (Glenn, C. R., Prévôt-Lucas, J., eds.), SEPM Special Publication, 2000, 66, 445–453.

15. Piper, D. Z., Calvert, S. E. A marine biogeochemical perspective on black shale deposition. Earth-Sci. Rev., 2009, 95(1–2), 63–96.
http://dx.doi.org/10.1016/j.earscirev.2009.03.001

16. Sener, M., Senguler, İ., Kök, M. V. Geological considerations for the economic evaluation of oil shale deposits in Turkey. Fuel, 1995, 74(7), 999–1003.
http://dx.doi.org/10.1016/0016-2361(95)00045-7

17. Altun, N. E., Hiçyılmaz, C., Hwang, J.-Y., Bağcı, A. S., Kök, M. V. Oil shales in the world and Turkey: reserves, current situation and future prospects: a review. Oil Shale, 2006, 23(3) 211–227.

18. Kök, M. V. Oil shale resources in Turkey. Oil Shale, 2006, 23(3), 209–210.

19. Sari, A., Geze, Y. Organic geochemical valuations of bituminous rock and coals in Miocene Himmetoglu Basin (Bolu, Turkey). Petrol. Sci. Technol., 2008, 26(6), 649–664.
http://dx.doi.org/10.1080/10916460701204958

20. Sonel, N., Sari, A., Demirel, İ. H. Petroleum source rock characteristics of Lower Tertiary formations in the Ereğli-Ulukışla Basin, Southern Central Anatolia, Turkey. 2008, Petrol. Sci. Technol., 26(4), 460–472.
http://dx.doi.org/10.1080/10916460600809691

21. Aliyev, S., Sarı, A. Biogeochemical properties of bituminous deposits in the Miocene Himmetoglu Basin (Turkey). Geochem. Int., 2011, 49(2), 170–180.
http://dx.doi.org/10.1134/S0016702911020029

22. Aliyev, S., Sarı, A., Koralay, D. B., Koç, S. Investigation of organic carbon and trace metal enrichments of rocks at the Paleocene-Eocene boundary, NW Turkey. Petrol. Sci. Technol. 2009, 27, 56–71.
http://dx.doi.org/10.1080/10916460701699793

23. Şener, M., Şengüler, I. Geological, mineralogical and geochemical charac­teristics of oil shale bearing deposit in the Hatıldağ oil shale field, Göynük, Turkey. Fuel, 1998, 77(8), 871–880.
http://dx.doi.org/10.1016/S0016-2361(97)00253-6

24. Mukhopadhyay, P. K., Goodarzi, F., Crandlemire, A. L., Gillis, K. S., MacNeil, D. J., Smith, W. D. Comparison of coal composition and elemental distribution in selected seams of the Sydney and Stellarton Basins, Nova Scotia, Eastern Canada. Int. J. Coal Geol., 1998, 37(1–2), 113–141.
http://dx.doi.org/10.1016/S0166-5162(98)00020-2

25. Querol, X., Finkelman, R. B., Alastuey, A., Huerta, A., Palmer, C. A., Mrocz­kowski, S., Kolker, A., Chenery, S. N. R., Robinson, J. J., Juan R., Lopez-Soler, A. Quantitative determination of modes of occurrence of major, minor and trace elements in coal: a comparison of results from different methods. In: Proceedings of the Australian Institute of Energy (AIE) 8th Australian Coal Science Conference, Australia, 1998, 51–56.

26. Spears, D. A., Zheng, Y. Geochemistry and origin of elements in some UK coals. Int. J. Coal Geol., 1999, 38(3–4), 161–179.
http://dx.doi.org/10.1016/S0166-5162(98)00012-3

27. Tissot, B. P., Welte, D. H. Petroleum Formation and Occurrence. Springer-Verlag, Berlin, 1984.

28. Peters, K. E., Cassa, M. R. Applied source rock geochemistry. In: The Petroleum System: From Source to Trap (Magoon, L. B., Dow, W. G., eds.), AAPG Memoir, 1994, 60, 93–120.

29. Jarvie, D. M., Factors affecting Rock-Eval derived kinetic parameters. Chem. Geol., 1991, 93(1–2), 79–99.
http://dx.doi.org/10.1016/0009-2541(91)90065-Y

30. Boggs, S., Jr. Petrology of Sedimentary Rocks. Cambridge University Press, Cambridge, England, 2009.
http://dx.doi.org/10.1017/CBO9780511626487

31. Potter, P. E. Petrology and chemistry of modern big river sands. J. Geol., 1978, 86(4), 423–449.
http://dx.doi.org/10.1086/649711

32. Gromet, L. P., Dymek, R. F., Haskin, L. A., Korotev, R. L. The “North American shale composite”: its compilation, major and trace element charac­teristics. Geochim. Cosmochim. Ac., 1984, 48, 2469–2482.
http://dx.doi.org/10.1016/0016-7037(84)90298-9

33. Condie, K. C. Another look at rare earth elements in shales. Geochim. Cosmo­chim. Ac., 1991., 55(9), 2527–2531.
http://dx.doi.org/10.1016/0016-7037(91)90370-K

34. Armstrong-Altrin, J. S., Verma, S. P., Madhavaraju, J., Lee, Y. I., Rama­samy, S. Geochemistry of Upper Miocene Kudankulam limestones, southern India. Int. Geol. Rev., 2003, 45(1), 16–26.
http://dx.doi.org/10.2747/0020-6814.45.1.16

35. Armstrong-Altrin, J. S., Lee, Y. I., Verma, S. P., Ramasamy, S. Geochemistry of sandstones from the Upper Miocene Kudankulam Formation, Southern India: implications for provenance, weathering and tectonic setting. J. Sediment. Res., 2004, 74(2), 285–297.
http://dx.doi.org/10.1306/082803740285

36. Ketris, M. P., Yudovich, Y. E. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int. J. Coal Geol., 2009, 78(2), 135–148.
http://dx.doi.org/10.1016/j.coal.2009.01.002

37. Milodowsky, A. E., Zalasiewicz, J. A. Redistribution of rare earth elements during diagenesis of turbidite/hemipelagite mudrock sequences of Llandovery age from Central Wales. Geol. Soc. Spec. Publ., 1991, 57, 101–124.
http://dx.doi.org/10.1144/GSL.SP.1991.057.01.10

38. Dubinin, A. V., Rimskaya-Korsakova, M. N. Geochemistry of rare earth elements in bottom sediments of the Brazil Basin, Atlantic Ocean. Lithology and Mineral Resources, 2011, 46 (1), 1–16.
http://dx.doi.org/10.1134/S0024490211010032

39. Rengarajan, R., Sarin, M. M. Distribution of rare earth elements in the Yamuna and the Chambal rivers, India, Geochem. J., 2004, 38, 551–569.
http://dx.doi.org/10.2343/geochemj.38.551

40. Bau, M. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chem. Geol., 1991, 93(3–4), 219–230.
http://dx.doi.org/10.1016/0009-2541(91)90115-8

41. Luo, Y., Gao, S., Yuan, H., Liu, X., Deltlef, G., Jin, Z., Sun, M. Ce anomaly in minerals of eclogite and garnet pyroxenite from Dabie-Sulu ultrahigh pressure metamorphic belt: Tacking subducted sediment formed under oxidizing condi­tions. Sci. China Ser. D-Earth Sci., 2004, 47(10), 920–930.

42. Kato, Y., Isozaki, Y. Comment on “Evaluation of palaeo-oxygenation of the ocean bottom cross the Permian-Triassic boundary” by Kakuwa (2008): Was the Late Permian deep-superocean really oxic? Global Planet. Change, 2009, 69(1–2), 79–81.
http://dx.doi.org/10.1016/j.gloplacha.2009.01.003

Back to Issue