ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
LEACHABILITY OF TRACE ELEMENTS FROM THE AGED AND FRESH SPENT SHALE DEPOSIT – A FIELD STUDY; pp. 456–467
PDF | doi: 10.3176/oil.2013.3.06

Authors
NATALYA IRHA, JANEK REINIK, EILIV STEINNES, GARY URB, UUVE KIRSO, JEKATERINA JEFIMOVA
Abstract

A field study of the leaching of trace elements from the upper soil layer of a spent shale deposit was carried out. The study was conducted by installing a set of samplers in both active and closed parts of the deposit. Leachates were analyzed for pH, conductivity and concentrations of elements by ICP-MS. The results indicated release of metals from both parts of the deposit. Among the elements Mo, Zn, Ni, Cu, Cr and V were most mobile. The highest concentrations of Mo (104 µg/l), Zn (80 µg/l) and Ni (76 µg/l) were found in leachates from the active part of the deposit.

References

  1. Dyni, J. R. Geology and Resources of Some World Oil-Shale Deposits. U.S. Geological Survey Scientific Investigations Report 2005-5294, 2006.

  2. Knaus, E., Killen, A. Technology may control adverse environmental effects. Oil and Gas J., 2009, 107, 42–45.

  3. Raukas, A., Punning, J.-M. Environmental problems in the Estonian oil shale industry. Energ. Environ. Sci., 2009, 2, 723–728.
http://dx.doi.org/10.1039/b819315k

  4. Datangel, B. and Goldfarb, J. L. Heavy metals in Colorado and Chinese oil shale semicoke: disposal issues, impediments to byproduct conversion. Energ. Fuel., 2011, 25(8), 3522–3529.
http://dx.doi.org/10.1021/ef2006386

  5. Blinova, I., Bityukova, L., Kasemets, K., Ivask, A., Käkinen, A., Kurvet, I., Bondarenko, O., Kanarbik, L., Sihtmäe, M., Aruoja, V., Schvede, H., Kahru, A., Environmental hazard of oil shale combustion fly ash. J. Hazard. Mater., 2012, 229–230, 192–200.
http://dx.doi.org/10.1016/j.jhazmat.2012.05.095

  6. Orupõld, K., Heinlaan, M., Põllumaa, L., Dubourguier, H.-C., Kahru, A. Impact of oil shale opencast mining and combustion on Narva River and its tributaries: chemical and ecotoxicological characterisation. Oil Shale, 2012, 29(2), 173–189.
http://dx.doi.org/10.3176/oil.2012.2.06

  7. Veiderma, M. Estonian oil shale – resources and usage. Oil Shale, 2003, 20(3S), 295–303.

  8. Saether, O. M., Banks, D., Kirso, U., Bityukova, L. & Sorlie, J.-E. The chemistry and mineralogy of waste from retorting and combustion of oil shale. In: Energy, Waste and the Environment: a Geochemical Perspective (Gieré, R., Stille, P., eds.), Geological Society Special Publication 236, Bath, UK, 2004, 263–284.

  9. Sedman, A., Talviste, P., Mõtlep, R., Jõeleht, A., Kirsimäe, K. Geotechnical characterization of Estonian oil shale semi-coke deposits with prime emphasis on their shear strength. Eng. Geol., 2012, 131–132, 37–44.
http://dx.doi.org/10.1016/j.enggeo.2012.02.002

10. 2007. Survey of Energy Resources. World Energy Council, London, 2007.

11. Trikkel, A., Kuusik, R., Maljukova, N. Distribution of organic and inorganic ingredients in Estonian oil shale semicoke. Oil Shale, 2004, 21(3), 227–236.

12. Regulation of the Government of the Republic of Estonia “List of Waste, including Hazardous Waste” (Jäätmete, sealhulgas ohtlike jäätmete nimistu). State Gazette (Riigi Teataja) RT I, 2004, 23, 155 (in Estonian).

13. Kirso, U., Irha, N., Reinik, J., Urb, G., Laja, M. The role of laboratory and field leaching tests in hazard identification for solid materials. Altern. Lab. Anim., 2007, 35(1), 119–122.

14. Van der Sloot, H. A., Comans, R. N. J., Hjelmar, O. Similarities in the leaching behaviour of trace contaminants from waste, stabilized waste, construction materials and soils. Sci. Total Environ., 1996, 178(1–3), 111–126.
http://dx.doi.org/10.1016/0048-9697(95)04803-0

15. Twardowska, I., Szczepanska, J. Solid waste: terminological and long-term environmental risk assessment problems exemplified in a power plant fly ash study. Sci. Total Environ., 2002, 285(1–3), 29–51.
http://dx.doi.org/10.1016/S0048-9697(01)00893-2

16. Connell, L. D., Bell, P. R. Description of a field experiment to measure leachate formation from oil shale wastes. Waste Manage. Res., 1992, 10(6), 517–533.
http://dx.doi.org/10.1016/0734-242X(92)90091-X

17. Haynes, R. J. Reclamation and revegetation of fly ash disposal sites – Challenges and research needs. J. Environ. Manage., 2009, 90(1), 43–53.
http://dx.doi.org/10.1016/j.jenvman.2008.07.003

18. Pédrot, M., Dia, A., Davranche, M., Bouhnik-Le Coz, M., Henin, O., Gruau, G. Insights into colloid-mediated trace element release at the soil/water interface. J. Colloid Interf. Sci., 2008, 325(1), 187–197.
http://dx.doi.org/10.1016/j.jcis.2008.05.019

19. Voll, M., Roots, O. Soil water sample collector. Environ. Monit. Assess., 1999, 54, 283–287.
http://dx.doi.org/10.1023/A:1005919729883

20. Mõtlep, R., Kirsimäe, K., Talviste, P., Puura, E., Jürgenson, J. Mineral com­posi­tion of Estonian oil shale semi-coke sediments. Oil Shale, 2007, 24(3), 405–422.

21. Tang, H., Otsa, E. The Determining of Environmental Hazard of Semi-Coke. The Report of the Estonian Environmental Research Center. Tallinn, 2003 (in Estonian, summary in English).

22. Baun, D. L., Christensen, T. H. Speciation of heavy metals in landfill leachate: a review. Waste Manage. Res., 2004, 22(1), 3–23.
http://dx.doi.org/10.1177/0734242X04042146

23. Baumann, T., Fruhstorfer, P., Klein, T., Niessner, R. Colloid and heavy metal transport at landfill sites in direct contact with groundwater. Water Res., 2006, 40(14), 2776–2786.
http://dx.doi.org/10.1016/j.watres.2006.04.049

24. Matura, M., Ettler, V., Ježek, J., Mihaljevič, M., Šebek, O., Sýkora, V. Associa­tion of trace elements with colloidal fractions in leachates from closed and active municipal solid waste landfills. J. Hazard. Mater., 2010, 183(1–3), 541–548.
http://dx.doi.org/10.1016/j.jhazmat.2010.07.058

25. Kretzschmar, R., Schäfer, T. Metal retention and transport on colloidal particles in the environment. Elements, 2005, 1(4), 205–210.
http://dx.doi.org/10.2113/gselements.1.4.205

26. Citeau, L., Lamy, I., van Oort, F., Elsass, F. Colloidal facilitated transfer of metals in soils under different land use. Colloid. Surface. A., 2003, 217(1–3), 11–19.
http://dx.doi.org/10.1016/S0927-7757(02)00554-X

27. Baumann, T. Colloid transport processes: experimental evidence from the pore scale to the field scale. In: Colloidal Transport in Porous Media (Frim­mel, F. H., Kammer, F., Flemming, H.-C., eds.). Springer, 2007, 55–85.
http://dx.doi.org/10.1007/978-3-540-71339-5_3

28. Bertsch, P. M., Seaman, J. C. Characterization of complex mineral assemblages: Implications for contaminant transport and environmental remediation,

 P. Natl. Acad. Sci. USA., 1999, 96, 3350–3357.
http://dx.doi.org/10.1073/pnas.96.7.3350

29. Stark, J. M., Redente, E. F. Plant uptake and cycling of trace elements on retorted oil shale disposal piles. J. Environ. Qual., 1990, 19(3), 495–501.
http://dx.doi.org/10.2134/jeq1990.00472425001900030023x

30. Rooney, C. P., Zhao, F.-J., McGrath, S. P. Phytotoxicity of nickel in a range of European soils: influence of soil properties, Ni solubility and speciation. Environ. Pollut., 2007, 145(2), 596–605.
http://dx.doi.org/10.1016/j.envpol.2006.04.008

Back to Issue