ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
EFFECT OF HEATING RATE ON PRODUCTS YIELD AND CHARACTERISTICS OF NON-CONDENSABLE GASES AND SHALE OIL OBTAINED BY RETORTING DACHENGZI OIL SHALE; pp. 27–47
PDF | doi: 10.3176/oil.2013.1.04

Authors
SHA WANG, JIAXUN LIU, Xiumin Jiang, Xiangxin Han, JIANHUI TONG
Abstract

Oil shale samples from Dachengzi mine located in Huadian city, Jilin province, China, were retorted in a stainless-steel cylindrical retort at a heating rate varied from 5 to 20 oC min–1 up to a final temperature of 520 oC under argon atmosphere. The influence of heating rate on the products yield and characteristics of shale oil and non-condensable gases was determined. It was observed that the shale oil yield first increased and then slightly diminished as the heating rate increased. The maximum shale oil yield was found to be 15.696 wt.% at a heating rate of 12 oC min–1. The non-condens­able gases yield increased with increasing heating rate. There was a corres­ponding decrease in the shale char yield. The carbon and nitrogen weight contents of the derived shale oil increased with increasing heating rate, while those of hydrogen and oxygen decreased. The sulfur weight content was not significantly affected by increasing the heating rate. As the heating rate increased from 5 to 20 oC min–1, the atomic H/C and O/C ratios of the derived shale oil decreased from 1.918 to 1.727 and from 0.116 to 0.048, respectively. Compared to crude oils, the produced shale oil had a higher atomic O/C ratio and a similar atomic H/C ratio, as well as a higher light oil content, which showed that the properties of shale oil were superior to those of crude oil. The liquid shale oil could be classified as a sweet and high-nitrogen oil in terms of the classification method of crude oil. Increasing heating rate decreased the content of saturates and aromatics and increased that of light oil, asphaltenes and non-hydrocarbons of the produced shale oil. The non-condensable gases contained high amounts of CH4 and minor concentrations of C2-C4 hydrocarbons. Increasing heating rate shifted the maximum concentration of C1-C4 hydrocarbons to higher temperature and increased the total content of C1-C4 hydrocarbons. The alkene/alkane gases ratio decreased from 0.45 to 0.29 with increasing the heating rate from 5 to 20 oC min–1 which was linked to secondary reactions. The lower alkene/ alkane gases ratio was possibly because the coking reactions dominated at higher heating rate.

References

  1. Yanik, J., Seçim, P., Karakaya, S., Tiikma, L., Luik, H., Krasulina, J., Raik, P., Palu, V. Low-temperature pyrolysis and co-pyrolysis of Göynük oil shale and terebinth berries (Turkey) in an autoclave. Oil Shale, 2011, 28(4), 469–486.
http://dx.doi.org/10.3176/oil.2011.4.02

  2. Dyni, J. R. Geology and resources of some world oil-shale deposits. Oil Shale, 2003, 20(3), 193–252.

  3. Altun, N. E., Hiçyilmaz, C., Hwang, J.-Y., Bağci, A. S., Kök, M. V. Oil shales in the world and Turkey; reserves, current situation and future prospects: a review. Oil Shale, 2006, 23(3), 211–227.

  4. Qian, J. L., Wang, J. Q., Li, S. Y. Oil shale development in China. Oil Shale, 2003, 20(3S), 356–359.

  5. Kök  M. V. Evaluation of Turkish oil shales – thermal analysis approach. Oil Shale, 2001, 18(2), 131–138.

  6. Kök, M. V. Thermal investigation of Seyitomer oil shale. Thermochim. Acta, 2001, 369(1–2), 149–155.
http://dx.doi.org/10.1016/S0040-6031(00)00764-4

  7. Liive, S. Oil shale energetics in Estonia. Oil Shale, 2007, 24(1), 1–4.

  8. Dyni, J. R. Oil shale. In 2010 Survey of Energy Resources (Clarke, A. W., Trinnaman, J. A., eds.). World Energy Council, 2010, 93–123. http:// www.worldenergy.org/ documents/ser_2010_report_1.pdf.

  9. Dyni, J. R. Oil shale. In 2007 Survey of Energy Resources (Clarke, A. W., Trinnaman, J. A., eds.). World Energy Council, 2007, 93–123. http:// www.worldenergy.org/documents/ser2007_final_online_version_1.pdf.

10. Williams,  P. T., Ahmad, N. Influence of process conditions on the pyrolysis of Pakistani oil shales, Fuel, 1999, 78(6), 653–662.
http://dx.doi.org/10.1016/S0016-2361(98)00190-2

11. Dung, N. V. Factors affecting product yields and oil quality during retorting of Stuart oil shale with recycled shale: a screening study. Fuel, 1995, 74(4), 623–627.
http://dx.doi.org/10.1016/0016-2361(95)98368-O

12. El harfi, K., Mokhlisse, A., Ben Chanâa, M. Yields and composition of oil obtained by isothermal pyrolysis of the Moroccan (Tarfaya) oil shales with steam or nitrogen as carrier gas. J. Anal. Appl. Pyrol., 2000, 56(2), 207–218.
http://dx.doi.org/10.1016/S0165-2370(00)00095-4

13. Kök, M. V., Pamir, M. R. Non-isothermal pyrolysis and kinetics of oil shales. J. Therm. Anal. Calorim., 1999, 56(2), 953–958.
http://dx.doi.org/10.1023/A:1010159718321

14. Kök, M. V., Senguler, I., Hufnagel, H., Sonel, N. Thermal and geochemical investi­gation of Seyitomer oil shale. Thermochim. Acta, 2001, 371(1–2), 111–119.
http://dx.doi.org/10.1016/S0040-6031(01)00415-4

15. Kök, M. V. Heating rate effect on the DSC kinetics of oil shales. J. Therm. Anal. Calorim., 2007, 90(3), 817–821.
http://dx.doi.org/10.1007/s10973-007-8240-3

16. Kök, M. V., Pamir, R. Pyrolysis kinetics of oil shales determined by DSC and TG/DTG. Oil Shale, 2003, 20(1), 57–68.

17. Olivella, M. A., De Las Heras, F. X. C. Evaluation of linear kinetic methods from pyrolysis data of Spanish oil shales and coals. Oil Shale, 2008, 25(2), 227–245.
http://dx.doi.org/10.3176/oil.2008.2.05

18. Wang, Q., Sun, B. Z., Hu, A. J., Bai, J. R., Li, S. H. Pyrolysis characteristics of Huadian oil shales. Oil Shale, 2007, 24(2), 147–157.

19. Campbell, J. H., Gallegos, G., Gregg, M. Gas evolution during oil shale pyro­lysis. 2. Kinetic and stoichiometric analysis. Fuel, 1980, 59(10), 727–732.
http://dx.doi.org/10.1016/0016-2361(80)90027-7

20. Nazzal, J. M. Influence of heating rate on the pyrolysis of Jordan oil shale. J. Anal. Appl. Pyrol., 2002, 62(2), 225–238.
http://dx.doi.org/10.1016/S0165-2370(01)00119-X

21. Campbell, J. H., Koskinas, G. J., Gallegos, G., Gregg, M. Gas evolution during oil shale pyrolysis. 1. Nonisothermal rate measurements. Fuel, 1980, 59(10), 718–726.
http://dx.doi.org/10.1016/0016-2361(80)90027-7

22. Campbell, J. H., Koskinas, G. H., Stout, N. D., Coburn, T. T. Oil shale retorting – effects of particle size and heating rate on oil evolution and intraparticle oil degradation. In Situ (United States), 1978, 2(1), 1–47.

23. Han, X. X., Jiang, X. M., Cui, Z. G. Studies of the effect of retorting factors on the yield of shale oil for a new comprehensive utilization technology of oil shale. Appl. Energ., 2009, 86(11), 2381–2385.
http://dx.doi.org/10.1016/j.apenergy.2009.03.014

24. Johnson, W. F., Walton, D. K., Keller, H. H., Couch, E. J. In situ retorting of oil shale rubble: a model of heat transfer and product formation in oil shale particles. Colo. School Mines Q., 1975, 70(3), 237–272.

25. Al-Ayed, O. S., Al-Harahsheh, A., Khaleel, A. M., Al-Harahsheh, M. Oil shale pyrolysis in fixed-bed retort with different heating rates. Oil Shale, 2009, 26(2), 139–147.
http://dx.doi.org/10.3176/oil.2009.2.06

26. Al-Ayed, O. S., Suliman, M. R., Rahman, N. A. Kinetic modeling of liquid generation from oil shale in fixed bed retort. Appl. Energ., 2010, 87(7), 2273–2277.
http://dx.doi.org/10.1016/j.apenergy.2010.02.006

27. Raley, J. H. Monitoring oil shale retorts by off-gas alkene/alkane ratios. Fuel, 1980, 59(6), 419–424.
http://dx.doi.org/10.1016/0016-2361(80)90195-7

28. Burnham, A. K., Ward, R. L. A possible mechanism of alkene/alkane produc­tion in oil shale retorting. ACS Div. Fuel Chem. Preprints, 1980, 25, 82–88.

29. Shen, M.-S., Lui, A. P., Shadle, L. J., Zhang, G.-Q., Morris, G. J. Kinetic studies of rapid oil shale pyrolysis. 2. Rapid pyrolysis of oil shales in a laminar-flow entrained reactor. Fuel, 1991, 70(11), 1277–1284.
http://dx.doi.org/10.1016/0016-2361(91)90214-U

30. Al-Harahsheh, A., Al-Ayed, O., Al-Harahsheh, M., Abu-El-Halawah, R. Heat­ing rate effect on fractional yield and composition of oil retorted from El-lajjun oil shale. J. Anal. Appl. Pyrol., 2010, 89(2), 239–243.
http://dx.doi.org/10.1016/j.jaap.2010.08.009

31. Ahmad, N., Williams, P. T. Influence of particle grain size on the yield and composition of products from the pyrolysis of oil shales. J. Anal. Appl. Pyrol., 1998, 46(1), 31–49.
http://dx.doi.org/10.1016/S0165-2370(98)00069-2

32. Nazzal, J. M. The influence of grain size on the products yield and shale oil composition from the pyrolysis of Sultani oil shale. Energ. Convers. Manage., 2008, 49(11), 3278–3286.
http://dx.doi.org/10.1016/j.enconman.2008.03.028

33. Hurst, H. J., Levy, J. H., Patterson, J. H. Siderite decomposition in retorting atmospheres. Fuel, 1993, 72(6), 885–890.
http://dx.doi.org/10.1016/0016-2361(93)90097-L

34. Nazzal, J. M. The presence of polycyclic aromatic hydrocarbons (PAH) in oil obtained at pyrolysis of Jordan oil shale. Oil Shale, 2007, 24(3), 465–475.

35. Williams, P. T., Nazzal, J. M. Polycyclic aromatic compounds in oils derived from the fluidised bed pyrolysis of oil shale. J. Anal. Appl. Pyrol., 1995, 35(2), 181–197.
http://dx.doi.org/10.1016/0165-2370(95)00908-9

36. Burnham, A. K. Chemistry of shale oil cracking. In Oil Shale, Tar Sands, and Related Materials (Stauffer, H. C., ed.). American Chemical Society Symposium Series, 1981, 163(Chap. 4), 39–60.

37. Stout, N. D., Koskinas, G. J., Raley, J. H., Santor, S. D., Opila, R. J., Roth­man, A. J. Pyrolysis of oil shale: the effects of thermal history on oil yield. Colo. School Mines Q., 1976, 71, 153–172.

38. Sun, Z. L. Evaluation and Analysis of Crude Oils. China Petrochemical Press, Beijing, 2005 (in Chinese).

39. Lin, S. X. Petroleum Refining Engineering (Third Edition). Petroleum Industry Press, Beijing, 2000 (in Chinese).

40. Williams, P. F. V. Thermogravimetry and decomposition kinetics of British Kimmeridge Clay oil shale. Fuel, 1985, 64(4), 540–545.
http://dx.doi.org/10.1016/0016-2361(85)90090-0

41. Wallman, P. H., Tamm, P. W., Spars, B. G. Oil shale retorting kinetics. In Oil Shale, Tar Sands, and Related Materials (Stauffer, H. C., ed.). American Chemical Society Symposium Series, 1981, 163(Chap. 7), 93–113.

42. Trejo, F., Ancheyta, J., Centeno, G., Marroquín, G. Effect of hydrotreating con­di­tions on Maya asphaltenes composition and structural parameters. Catal. Today, 2005, 109(1-4), 178–184.
http://dx.doi.org/10.1016/j.cattod.2005.08.013

43. Ancheyta, J., Centeno, G., Trejo, F., Marroquín, G. Changes in asphaltene pro­perties during hydrotreating of heavy crudes. Energ. Fuel., 2003, 17(5), 1233–1238.
http://dx.doi.org/10.1021/ef030023+

Back to Issue