ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
THERMOCHEMICAL CO-LIQUEFACTION OF ESTONIAN KUKERSITE OIL SHALE WITH PEAT AND PINE BARK; pp. 222–236
PDF | doi: 10.3176/oil.2012.3.03

Authors
JULIA KRASULINA, Hans Luik, Vilja Palu, Hindrek TAMVELIUS
Abstract

Kukersite oil shale + pine bark, kukersite oil shale + peat as well as kukersite, bark and peat individually were submitted to thermochemical liquefaction in an autoclave with and without solvent for two hours at different temperatures from 340 to 420 °C. Water and benzene as solvents were used. The influence of several factors such as temperature, solvent and its type, and oil shale-to-peat or oil shale-to-biomass ratio on the yield of liquid, gaseous and solid products was investigated. The chemical composi­tion of the goal liquid product separated as the benzene soluble oil was characterised by using FTIR-spectroscopy and ultimate analysis apparatus. Group composition of the oil was determined by using thin-layer chromato­graphy. In co-liquefaction experiments several synergistic effects in product yields were observed. The most important synergistic effect was noticed at co-liquefaction of the mixture oil shale with peat (10 : 4 by mass of the organic matter) at 360 °C in the medium of water in which case the yield of the liquid product was 25% higher than the sum of corresponding yields obtained at liquefaction of oil shale and peat separately in the same experi­mental conditions. The group composition of oils shows that various polar and high-polar oxygen compounds prevail over hydrocarbon fractions. Data on the elemental and group composition demonstrate that partial substitution of biomass or peat for oil shale leads to obtaining chemically modified shale oil.

References

 1. Kumabe, K., Hanaoka, T., Fujimoto, S., Minowa, T., Sakanishi, K. Co-gasifica­tion of woody biomass and coal with air and steam. Fuel, 2007, 86(5-6), 684–689.
http://dx.doi.org/10.1016/j.fuel.2006.08.026

  2. Jones, J. M., Kubacki, M., Kubica, K., Ross, A. B., Williams, A. Devolatilisa­tion characteristics of coal and biomass blends. J. Anal. Appl. Pyrol., 2005, 74(1), 502–511.
http://dx.doi.org/10.1016/j.jaap.2004.11.018

  3. Moghtaderi, B., Meesri, C., Wall, T. F. Co-pyrolysis of coal and woody bio­mass. Prepr. Symp. Am. Chem. Soc., Div. Fuel Chem., 2003, 48(1), 363–364.

  4. Meesri, C., Moghtaderi, B. Lack of synergetic effects in the pyrolytic charac­teristics of woody biomass/coal blends under low and high heating rate regimes. Biomass Bioenerg., 2002, 23(1), 55–66.
http://dx.doi.org/10.1016/S0961-9534(02)00034-X

  5. Collot, A.-G., Zhuo, Y., Dugwell, D. R., Kandiyoti, R. Co-pyrolysis and co-gasification of coal and biomass in bench-scale fixed-bed and fluidised bed reactors. Fuel, 1999, 78(6), 667–679.
http://dx.doi.org/10.1016/S0016-2361(98)00202-6

  6. Vuthaluru, H. B. Investigations into the pyrolytic behaviour of coal/biomass blends using thermogravimetric analysis. Bioresource Technol., 2004, 92(2), 187–195.
http://dx.doi.org/10.1016/j.biortech.2003.08.008

  7. Vuthaluru, H. B. Thermal behaviour of coal/biomass blends during co-pyrolysis. Fuel Process. Technol., 2004, 85(2–3), 141–155.
http://dx.doi.org/10.1016/S0378-3820(03)00112-7

  8. Moghtaderi, B., Meesri, C., Wall, T. F. Pyrolytic characteristics of blended coal and woody biomass. Fuel, 2004, 83(6), 745–750.
http://dx.doi.org/10.1016/j.fuel.2003.05.003

  9. Matsumura, Y., Nonaka, H., Yokura, H., Tsutsumi, A., Yoshida, K. Co-liquefac­tion of coal and cellulose in supercritical water. Fuel, 1999, 78(9), 1049–1056.
http://dx.doi.org/10.1016/S0016-2361(99)00025-3

10. Cordero, T., Rodríguez-Mirasol, J., Pastrana, J., Rodríguez, J. J. Improved solid fuels from co-pyrolysis of a high-sulphur content coal and different ligno­cellulosic wastes. Fuel, 2004, 83(11–12), 1585–1590.
http://dx.doi.org/10.1016/j.fuel.2004.02.013

11. Ahmaruzzaman, M., Sharma, D. K. Characterization of liquid products obtained from co-cracking of petroleum vacuum residue with coal and biomass. J. Anal. Appl. Pyrol., 2008, 81(1), 37–44.
http://dx.doi.org/10.1016/j.jaap.2007.08.001

12. Sonobe, T., Worasuwannarak, N., Pipatmanomai, S. Synergies in co-pyrolysis of Thai lignite and corncob. Fuel Process. Technol., 2008, 89(12), 1371–1378.
http://dx.doi.org/10.1016/j.fuproc.2008.06.006

13. Zhang, L., Xu, S., Zhao, W., Liu, S. Co-pyrolysis of biomass and coal in a free fall reactor. Fuel, 2007, 86(3), 353–359.
http://dx.doi.org/10.1016/j.fuel.2006.07.004

14. Haykiri-Acma, H., Yaman, S. Synergy in devolatilization characteristics of lignite and hazelnut shell during co-pyrolysis. Fuel, 2007, 86(3), 373–380.
http://dx.doi.org/10.1016/j.fuel.2006.07.005

15. Rafiqul, I., Lugang, B., Yan, Y., Li, T. Study on co-liquefaction of coal and bagasse by factorial experiment design method. Fuel Process. Technol., 2000, 68(1), 3–12.
http://dx.doi.org/10.1016/S0378-3820(00)00107-7

16. Storm, C., Rüdiger, H., Spliethoff, H., Hein, K. R. G. Co-pyrolysis of coal/bio­mass and coal/sewage sludge mixtures. J. Eng. Gas Turb. Power, 1999, 121(1), 55–63.
http://dx.doi.org/10.1115/1.2816312

17. Oriňák, A., Halás, L., Amar, I., Andersson, J. T., Ádámová, M. Co-pyrolysis of polymethyl methacrylate with brown coal and effect on monomer production. Fuel, 2006, 85(1), 12–18.
http://dx.doi.org/10.1016/j.fuel.2005.04.030

18. Sakurovs, R. Interactions between coking coals and plastics during co-pyrolysis. Fuel, 2003, 82(15–17), 1911–1916.
http://dx.doi.org/10.1016/S0016-2361(03)00173-X

19. Ballice, L., Reimert, R. Temperature-programmed co-pyrolysis of Turkish lignite with polypropylene. J. Anal. Appl. Pyrol., 2002, 65(2), 207–219.
http://dx.doi.org/10.1016/S0165-2370(01)00195-4

20. Comolli, A. G., Ganguli, P., Stalzer, R. H., Lee, T. L. K., Zhou, P. The direct liquefaction co-processing of coal, oil, plastics, MSW, and biomass. Prepr. Symp. Am. Chem. Soc., Div. Fuel Chem., 1999, 44(2), 300–305.

21. Dadyburjor, D. B., Shaikh, H. Z., Zondlo, J. W. Co-liquefaction of coal and high-density polyethylene. Prepr. Symp. Am. Chem. Soc., Div. Fuel Chem., 1999, 44(2), 311–314.

22. Wang, L., Chen, P. Development of first-stage co-liquefaction of Chinese coal with waste plastics. Chem. Eng. Process., 2004, 43(2), 145–148.
http://dx.doi.org/10.1016/S0255-2701(03)00076-X

23. Wang, L., Chen, P. Mechanism study of iron-based catalysts in co-liquefaction of coal with waste plastics. Fuel, 2000, 81(6), 811–815.
http://dx.doi.org/10.1016/S0016-2361(01)00201-0

24. Gimouhopoulos, K., Doulia, D., Vlyssides, A., Georgiou, D. Waste plastics–lignite co-liquefaction innovations. Resour. Conserv. Recy., 1999, 26(1), 43–52.
http://dx.doi.org/10.1016/S0921-3449(98)00074-3

25. Ahmaruzzaman, M., Sharma, D. K. Non-isothermal kinetic studies on co-proces­sing of vacuum residue, plastics, coal and petrocrop. J. Anal. Appl. Pyrol., 2005, 73(2), 263–275.
http://dx.doi.org/10.1016/j.jaap.2004.11.035

26. Luik, H. Chemicals and other products from shale oil. In: UNESCO Encyclopedia of Life Support Systems. Oxford UK, Publishers Co. Ltd, 2000.

27. Trikkel, A., Kuusik, R., Martins, A., Pihu, T., Stencel, J. M. Utilization of Estonian oil shale semicoke. Fuel Process. Technol., 2008, 89(8), 756–763.
http://dx.doi.org/10.1016/j.fuproc.2008.01.010

28. Ministry of the Environment Obtained Study Results on Semicoke Composition. 11.04.2003. http://www.envir.ee/66671.

29. Alpern, B., Lemos de Sousa, M. J. Documented international enquiry on solid sedimentary fossil fuels; coal: definitions, classifications, reserves-resources, and energy potential. Int. J. Coal Geol., 2002, 50(1–4), 3–41.
http://dx.doi.org/10.1016/S0166-5162(02)00112-X

30. Orru, M. (Ed.). Estonian Peat Resources. Tallinn, Geological Survey of Estonia, 1992, P. 146 (in Estonian).

31. Yao, S., Xue, C., Hu, W., Cao, J., Zhang, C. A comparative study of experi­mental maturation of peat, brown coal and subbituminous coal: Implications for coalification. Int. J. Coal Geol., 2006, 66(1–2), 108–118.
http://dx.doi.org/10.1016/j.coal.2005.07.007

32. Lishtvan, I. Problems of peat production to be met with in Byelorussia. Estonian Peat, 1994, 3, 3–5 (in Estonian).

33. Orru, M. Production cost of surface peat. Estonian Peat, 1994, 1, 2–3 (in Estonian).

34. Björnbom, E., Björnbom, P. Some criteria for the selection of peat as a raw material for liquefaction. Fuel, 1988, 67(11), 1589–1591.
http://dx.doi.org/10.1016/0016-2361(88)90083-X

35. Björnbom, P., Granath, L., Kannel, A., Karlsson, G., Lindström, L., Björn­bom, E. Liquefaction of Swedish peats. Fuel, 1981, 60(1), 7–13.
http://dx.doi.org/10.1016/0016-2361(81)90024-7

36. Orru, M. Basic properties of fuel peat. Estonian Peat, 1994, 1, 8–10 (in Estonian).

37. Sutcu, H. Pyrolysis of peat: Product yield and characterization. Korean J. Chem. Eng., 2007, 24(5), 736–741.
http://dx.doi.org/10.1007/s11814-007-0035-5

38. Fuchsman, C. H. Peat: Industrial Chemistry and Technology. New York, Academic Press, 1980.

39. McKendry, P. Energy production from biomass (part 1): overview of biomass. Bioresource Technol., 2002, 83(1), 37–46.
http://dx.doi.org/10.1016/S0960-8524(01)00119-5

40. Mohan, D., Pittman, Jr., C. U., Steele, P. H. Pyrolysis of wood/biomass for bio-oil: A critical review. Energ. Fuel, 2006, 20(3), 848–889.
http://dx.doi.org/10.1021/ef0502397

41. Yaman, S. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energ. Convers. Manage., 2004, 45(5), 651–671.
http://dx.doi.org/10.1016/S0196-8904(03)00177-8

42. Tiikma, L., Johannes, I., Luik, H. Fixation of chlorine evolved in pyrolysis of PVC waste by Estonian oil shales. J. Anal. Appl. Pyrol., 2006, 75(2), 205–210.
http://dx.doi.org/10.1016/j.jaap.2005.06.001

43. Luik, H., Luik, L., Tiikma, L., Vink, N., Kozyreva, J. Upgrading shale oil heavy fractions with biomass via catalytical hydroprocessing. In: Success & Visions for Bioenergy. Thermal processing of biomass for bioenergy, biofuels and bio­products (Bridgewater, A. V., ed). (CD-ROM). CPL Scientific Publishing Services Ltd., 2007. 7 pp.

44. Luik, L., Luik, H., Bityukov, M., Kruusement, K., Sokolova, J., Tamvelius, H. Thermochemical co-liquefaction of biomass wastes and Estonian oil shale. In: Success & Visions for Bioenergy. Thermal processing of biomass for bioenergy, biofuels and bioproducts (Bridgewater, A. V., ed). (CD-ROM). CPL Scientific Publishing Services Ltd., 2007. 8 pp.

45. Luik, L., Luik, H., Vink, L., Kruusement, K., Veski, R. Thermochemical co-liquefaction of woody biomass and fossil fuel in supercritical water. In: 15th European Biomass Conference & Exhibition: From Research to Market Deployment. Florence, Italy, 2007. ETA – Renewable Energies, WIP-Renew­able Energies, 1955–1959.

46. Veski, R., Palu, V., Kruusement, K. Co-liquefaction of kukersite oil shale and pine wood in supercritical water. Oil Shale, 2006, 23(3), 236–248.

47. Tiikma, L., Tamvelius, H., Luik, L. Coprocessing of heavy shale oil with polyethylene waste. J. Anal. Appl. Pyrol., 2007, 79(1–2), 191–195.
http://dx.doi.org/10.1016/j.jaap.2006.12.029

48. Luik, H., Palu, V., Tamvelius, H., Luik, L., Sokolova, J. Co-conversion of salix biomass and oil shale in the medium of supercritical water. In: 16th European Biomass Conference & Exhibition: From Research to Industry and Markets. Proceedings of the International Conference, Valencia, Spain, 2–6 June 2008. Florence, Italy: ETA – Florence Renewable Energies; WIP – Renewable Energies. P. 2007–2009.

Back to Issue