ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
GREEN PROCESS FOR SIMULTANEOUS EXTRACTION OF OIL SHALE AND ENRICHMENT OF ETHANOL; pp. 516–527
PDF | doi: 10.3176/oil.2011.4.05

Authors
A. WOLFSON, Y. ELMUGRABI, R. LEVI, D. TAVOR, J. WISNIAK
Abstract

Pure ethanol and its mixtures with water were used as extraction solvents for two Israeli's oil shales. Using bioethanol-like mixtures to produce organic matter from oil shales made the extraction process environmentally friendlier, while simultaneously enriched the ethanol to a level that it can be used as a fuel. It was found that oil shale characteristics, such as organic and water content and particle size, as well as extraction parameters such as shale loading and mixing speed, were found to highly affect the extraction yield. Under optimum conditions up to 8 wt% of organic matter was extracted by ethanol.

References

  1. Sunggyu, L. Oil Shale Technology. – CRC Press, 1991.

  2. Sunggyu, L., Speight, J. G., Loyalka, S. K. Handbook of Alternative Fuel Technologies. CRC Press, 2007. P. 223–296.

  3. Heller, A. Chemical engineering challenges and investment opportunities in sustainable energy // ChemSusChem. 2008. Vol. 1, No. 7. P. 651–652.

  4. Han, X. X, Jiang, X. M., Cui, Z. G. Studies of the effect of retorting factors on the yield of shale oil for a new comprehensive utilization technology of oil shale // Appl. Energ. 2009. Vol. 86, No. 11. P. 2381–2385.

  5. Kök, M. V., Pamir, M. R. Comparative pyrolysis and combustion kinetics of oil shales // J. Anal. Appl. Pyrol. 2000. Vol. 55, No. 2. P. 185–194.
http://dx.doi.org/10.1016/S0165-2370(99)00096-0

  6. Berkovich, A. J., Young, B. R., Levy, J. H., Schmidt, S. J., Ray, A. Thermal cha­racterisation of Australian oil shales // J. Therm. Anal. Calorim. 1997. Vol. 49, No. 2. P. 737–743.
http://dx.doi.org/10.1007/BF01996757

  7. Kök, M. V. Thermal investigation of Seyitomer oil shale // Thermochim. Acta. 2001. Vol. 369, No. 1–2. P. 149–155.
http://dx.doi.org/10.1016/S0040-6031(00)00764-4

  8. Kök, M. V., Pamir, R. Pyrolysis kinetics of oil shales determined by DSC and TG/DTG // Oil Shale. 2003. Vol. 20, No. 1. P. 57–68.

  9. Kök, M. V., Pokol, G., Keskin, C., Madarász, J., Bagci, S. Combustion charac­teristics of lignite and oil shale samples by thermal analysis techniques // J. Therm. Anal. Calorim. 2004. Vol. 76, No. 1. P. 247–254.
http://dx.doi.org/10.1023/B:JTAN.0000027823.17643.5b

10. Kök, M. V. Heating rate effect on the DSC kinetics of oil shales // J. Therm. Anal. Calorim. 2007. Vol. 90, No. 3. P. 817–821.
http://dx.doi.org/10.1007/s10973-007-8240-3

11. Koel, M., Ljovin, S., Hollis, K., Rubin, J. Using neoteric solvents in oil shale studies // Pure Appl. Chem. 2001. Vol. 73, No. 1. P. 153–159.
http://dx.doi.org/10.1351/pac200173010153

12. Morrell, C. E., Smith, Jr. P. V. Process for separating organic material from inorganic material. US Patent 2,722,498, 1955.

13. Kramer, R., Levy, M. Extraction of oil shales under supercritical conditions // Fuel. 1989. Vol. 68, No. 6. P. 702–709.

14. Ga-Hourcade, M. L., Carmen, T., Miguel, A. G. Study of the solubility of kerogen from oil shales (Puertollano, Spain) in supercritical toluene and methanol // Fuel. 2007. Vol. 86, No. 5–6. P. 698–705.

15. Sinag, A., Canel, M. Comparison of retorting and supercritical extraction techniques on gaining liquid products from Goynuk oil shale (Turkey) // Energ. Source. 2004. Vol. 26, No. 8. P. 739–749.
http://dx.doi.org/10.1080/00908310490445599

16. Bishop, A. N., Love, G. D., McAulay, A. D., Snape, C. E., Farrimond, P. Release of kerogen-bound hopanoids by hydropyrolysis // Org. Geochem. 1998. Vol. 29, No. 4. P. 989–1001.
http://dx.doi.org/10.1016/S0146-6380(98)00140-5

17. Wall, E. T. Method and apparatus for recovering carbon products from oil shale. US Patent 4,376,034, 2000.

18. El harfi, K., Mokhlisse, A., Chanâa, M. B., Outzourhit, A. Pyrolysis of the Moroccan (Tarfaya) oil shales under microwave irradiation // Fuel. 2000. Vol. 79, No. 7. P. 733–742.

19. Blanco, C. G., Prado, J. G., Guillen, M. D., Borrego, A. G. Preliminary results of extraction experiments in an oil shale // Org. Geochem. 1992. Vol. 18, No. 3. P. 313–316.
http://dx.doi.org/10.1016/0146-6380(92)90072-6

20. Wooley, R., Ruth, M., Glassner, D., Sheehan, J. Process design and costing of bioethanol technology: A tool for determining the status and direction of research and development // Biotechnol. Progr. 1999. Vol. 15, No. 5. P. 794–803.
http://dx.doi.org/10.1021/bp990107u

21. Gray, K. A., Zhao, L., Emptage, M. Bioethanol // Curr. Opin. Chem. Biol. 2006. Vol. 10, No. 2. P. 141–146.
http://dx.doi.org/10.1016/j.cbpa.2006.02.035

22. von Blottnitz, H., Curran, M. A. A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environ­mental life cycle perspective // J. Clean. Prod. 2007. Vol. 15, No. 7. 607–619.
http://dx.doi.org/10.1016/j.jclepro.2006.03.002

Back to Issue