ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
KINETICS OF ISOTHERMAL AND NON-ISOTHERMAL PYROLYSIS OF OIL SHALE; pp. 415–424
PDF | doi: 10.3176/oil.2011.3.05

Authors
Xia Yongjiang, XUE HUAQING, WANG HONGYAN, LI ZHIPING, FANG CHAOHE
Abstract

The kinetics of decomposition of Huadian oil shale was studied by non-iso­thermal and isothermal methods. The non-isothermal weight loss was recorded at different heating rates (2, 5, 10, 15 and 20 K/min) up to 873 K. Two non-isothermal methods were applied for determination of kinetic para­meters: the direct Arrhenius plot method and integral method. The iso­thermal weight loss studies were carried out for one hour at different tem­peratures 623, 648, 673, 698 and 723 K. Activation energy and frequency factor were calculated.
    The kinetic parameters evaluated from isothermal and non-isothermal kinetic data were compared with each other. As for the two non-isothermal analysis models, the integral method shows lower deviation and hence pro­vides a better fit of the data. The average results of non-isothermal experi­ments were similar to kinetic para­meters determined by isothermal analysis.

References

  1. Qian, J., Wang, J., Li, S. Oil shale development in China // Oil Shale. 2003. Vol. 20, No. 3S. P. 356–359.

  2. Nazzal, J. M. The influence of grain size on the products yield and shale oil composition from the pyrolysis of Sultani oil shale // Energ. Convers. Manage. 2008. Vol. 49, No. 11. P. 3278–3286.
http://dx.doi.org/10.1016/j.enconman.2008.03.028

  3. Ahmad, N., Williams, P. T. Influence of particle grain size on the yield and composition of products from the pyrolysis of oil shales // J. Anal. Appl. Pyrol. 1998. Vol. 46, No. 1. P. 31–49.
http://dx.doi.org/10.1016/S0165-2370(98)00069-2

  4. Shen, M. S., Lui, A. P., Shadle, L. J., Zhang, G. Q., Morris, G. J. Kinetic studies of rapid oil shale pyrolysis: 2. Rapid pyrolysis of oil shales in a laminar-flow entrained reactor // Fuel. 1991. Vol. 70, No. 11. P. 1277–1284.

  5. Hubbard, A. B., Robinson, W. E. US Bureau of Mines Report of Investigation, No. 4744, 1950.

  6. Allred, V. D. Kinetics of oil shale pyrolysis // Chem. Eng. Progr. 1966. Vol. 62, No. 8. P. 55–60.

  7. Coats, A. W., Redfern, J. P. Kinetic parameters from thermogravimetric data // Nature. 1964. Vol. 201, No. 4914. P. 68–69.

  8. Campbell, J. H., Koskinas, G. H., Stout, N. D. Kinetics of oil generation from Colorado oil shale // Fuel. 1978. Vol. 57, No. 6. P. 372–376.

  9. Braun, R. L., Rothman, A. J. Oil-shale pyrolysis: Kinetics and mechanism of oil production // Fuel. 1975. Vol. 54, No. 2. P. 129–131.

10. Khraisha, Y. H. Kinetics of isothermal pyrolysis of Jordan oil shales // Energ. Convers. Manage. 1998, Vol. 39, No. 3-4. P. 157–165.
http://dx.doi.org/10.1016/S0196-8904(96)00230-0

11. Lee, S. Oil Shale Technology. – USA: Florida, Boca Raton, CRC Press Inc., 1991. P. 52.

12. Torrente, M. C., Galán, M. A. Kinetics of the thermal decomposition of oil shale from Puertollano (Spain) // Fuel. 2001. Vol. 80, No. 3. P. 327–334.
http://dx.doi.org/10.1016/S0016-2361(00)00101-0

13. Li, S., Qian, J. Study of the pyrolysis of Maoming oil shale lumps // Fuel. 1991. Vol. 70, No. 12. P. 1371–1375.

14. Thakur, D. S., Nuttall Jr., H. E. Kinetics of pyrolysis of Moroccan oil shale by thermogravimetry // Ind. Eng. Chem. Res. 1987. Vol. 26, No. 7. P. 1351-1356.
http://dx.doi.org/10.1021/ie00067a015

15. Rajeshwar, K. Thermal analysis of coals, oil shales and oil sands // Thermo­chim. Acta. 1983. Vol. 63, No. 1. P. 97–112.
http://dx.doi.org/10.1016/0040-6031(83)80048-3

16. Xue, H., Li, S., Wang, H., Zheng, D., Fang, C. Pyrolysis kinetics of oil shale from Northern Songliao basin in China // Oil Shale. 2010. Vol. 27, No. 1. P. 5–16.

17. Olivella, M. A., de las Heras, F. X. C. Nonisothermal thermogravimetry of Spanish fossil fuels // Oil Shale. 2006. Vol. 23, No. 4. P. 340–355.

18. Olivella, M. A. Study of sulfur in fossil fuels. PhD. Thesis. – Universitat Politècnica de Catalunya (ed), Manresa, 2000. 325 pp.

19. Grønli, M., Antal, M. J., Várhegyi, G. A round-robin study of cellulose pyro­lysis kinetics by thermogravimetry // Ind. Eng. Chem. Res. 1999. Vol. 38, No. 6. P. 2238–2244.
http://dx.doi.org/10.1021/ie980601n

20. Williams, P. T., Ahmad, N. Influence of process conditions on the pyrolysis of Pakistan oil shales // Fuel. 1999. Vol. 78, No. 6. P. 653–662.

21. Li, S., Yue, C. Study of different kinetic models for oil shale pyrolysis // Fuel Process. Technol. 2004. Vol. 85, No. 1. P. 51–61.
http://dx.doi.org/10.1016/S0378-3820(03)00097-3

22. Williams, P. T., Ahmad, N. Investigation of oil-shale pyrolysis processing conditions using thermogravimetric analysis // Appl. Energ. 2000. Vol. 66,
No. 2. P. 113–133.

23. Skala, D., Sokic, M., Kopsch, H. Oil shale pyrolysis – a new approach to the kinetic investigation of different kerogen type samples // Thermochim. Acta. 1988. Vol. 134. P. 353–358.
http://dx.doi.org/10.1016/0040-6031(88)85259-6

24. Dogan, O. M., Uysal, B. Z. Non-isothermal pyrolysis kinetics of three Turkish oil shales // Fuel. 1996. Vol. 75, No. 12. P. 1424–1428.

Back to Issue