ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
BIODEGRADABILITY OF PHENOL, RESORCINOL AND 5-METHYLRESORCINOL AS SINGLE AND MIXED SUBSTRATES BY ACTIVATED SLUDGE; pp. 425–446
PDF | doi: 10.3176/oil.2011.3.06

Authors
R. Lepik, T. TENNO
Abstract

The aim of this study was to investigate aerobic biodegradability of phenol, resorcinol and 5-methylresorcinol and their different two-component mixtures using activated sludge sampled from the Kohtla-Järve wastewater treatment plant. The degradation behaviour of phenolic compounds was investigated by respirometry. Non-linear regression analysis was used for determination of the kinetic parameters such as the maximum rate of oxygen uptake (VO2,max), the maximum rate of substrate   bio-oxidation   (Vmax) and the half-saturation coefficient (KS).   Various kinetic models were tested to obtain the best curve fit. It was shown that the activated sludge degraded resorcinol and 5-methylresorcinol more slowly than phenol. Among the studied substrates phenol had the highest values of VO2,max, Vmax as well as the ratio of VO2,max /KS. Activated sludge had the highest affinity to phenol with the lowest KS value. Among all studied bi-substrate systems the highest VO2,max  values were found for phenol (0.1 mM) – 5-methyl­resorcinol. As the kinetic parameters and short-term oxygen demands are functions of the compound undergoing biodegradation and the composition of the microbial community performing the degradation, therefore the results of this study have importance in explanation of effectiveness of wastewater treatment process and of the influence of polluting compounds on it.

References

  1. Monteiro, A. M. G., Boaventura, R. A. R., Rodrigues, A. E. Phenol biodegrada­tion by Pseudomonas putida DSM 548 in a batch reactor // Biochem. Eng. J. 2000. Vol. 6, No. 1. P. 45–49.
http://dx.doi.org/10.1016/S1369-703X(00)00072-3

  2. Minister of Environment of Estonia. Program Concerning the Reduction of Discharges of Phenols into the Water Bodies until 2014 // Order No 1042 from 26 July 2010 [In Estonian].

  3. Estonian Environment Information Centre. Estonian Environmental Review 2009. – Tallinn, 2010. 184 pp.

  4. Estonian Environmental Information Centre. State of Environment in Estonia – on the threshold of XXI century. – Tallinn, 2001. 98 pp.

  5. Straube, G. Phenol hydroxylase from Rhodococcus sp. P1 // J. Basic Microb. 1987. Vol. 27. P. 229–232.
http://dx.doi.org/10.1002/jobm.3620270415

  6. Paller, G., Hommel, R. K., Kleber, H.-P. Phenol degradation by Acinetobacter calcoaceticus NCIB 8250 // J. Basic Microb. 1995. Vol. 35, No. 5. P. 325–335.
http://dx.doi.org/10.1002/jobm.3620350508

  7. Aleksieva, Z., Ivanova, D., Godjevargova, T., Atanasov, B. Degradation of some phenol derivatives by Trichosporon cutaneum R57 // Process Biochem. 2002. Vol. 37, No. 11. P. 1215–1219.
http://dx.doi.org/10.1016/S0032-9592(01)00336-3

  8. Painter, H. A., King, E. F. Biodegradation of water-soluble compounds // The Handbook of Environmental Chemistry. Vol. 2, Part C / O. Hutzinger (ed.). Berlin: Springer-Verlag, 1985. P. 87–120.

  9. Joshi, N. T., D’Souza, S. F. Immobilization of activated sludge for the degradation of phenol // J. Environ. Sci. Heal. A. 1999. Vol. 34, No. 8. P. 1689–1700.
http://dx.doi.org/10.1080/10934529909376921

10. Marrot, B., Barrios-Martinez, A., Moulin, P., Roche, N. Biodegradation of high phenol concentration by activated sludge in an immersed membrane bioreactor // Biochem. Eng. J. 2006. Vol. 30, No. 2. P. 174–183.
http://dx.doi.org/10.1016/j.bej.2006.03.006

11. Spanjers, H., Olsson, G., Klapwijk, A. Determining short-term biochemical oxygen demand and respiration rate in an aeration tank by using respirometry and estimation // Water Res. 1994. Vol. 28, No. 7. P. 1571–1583.
http://dx.doi.org/10.1016/0043-1354(94)90224-0

12. Čech, J. S., Chudoba, J., Grau, P. Determination of kinetic constants of activated sludge microorganisms // Water Sci. Technol. 1984. Vol. 17, No. 2–3. P. 259–272.

13. Orupõld, K., Maširin, A., Tenno, T. Estimation of biodegradation parameters of phenolic compounds on activated sludge by respirometry // Chemosphere. 2001. Vol. 44, No. 5. P. 1273–1280.

14. Vanrolleghem, P. A. Principles of respirometry in activated sludge wastewater treatment // Proceedings International Workshop on Recent Development in Respirometry for Wastewater Treatment Plant Monitoring and Control. Taiwan: Taipei, 2002. P. 2/1–20.

15. Lepik, R., Orupõld, K., Viggor, S., Tenno, T. Study of biodegradability of methyl- and hydroxyphenols by activated sludge // Oil Shale. 2003. Vol. 20, No. 2. P. 99–112.

16. Brouwer, H., Klapwijk, A., Keesman, K. J. Modelling and control of activated sludge plants on the basis of respirometry // Water Sci. Technol. 1994. Vol. 30, No. 4. P. 265–274.

17. Kim, C. W., Kim, B. G., Lee, T. H., Park, T. J. Continuous and early detection of toxicity in industrial wastewater using an on-line respiration meter // Water Sci. Technol. 1994. Vol. 30, No. 3. P. 11–19.

18. Vanrolleghem, P. A., Kong, Z., Rombouts, G., Verstraete, W. An on-line respiro­graphic biosensor for the characterization of load and toxicity of wastewaters // J. Chem. Technol. Biot. 1994. Vol. 59, No. 4. P. 321–333.
http://dx.doi.org/10.1002/jctb.280590403

19. Guwy, A. J., Buckland, H., Hawkes, F. R., Hawkes, D. L. Active biomass in activated sludge: comparison of respirometry with catalase activity measured using an on-line monitor // Water Res. 1998. Vol. 32, No. 12. P. 3705–3709.
http://dx.doi.org/10.1016/S0043-1354(98)00157-2

20. Marsili-Libelli, S., Tabani, F. Accuracy analysis of a respirometer for activated sludge dynamic modelling // Water Res. 2002. Vol. 36, No. 5. P. 1181–1192.
http://dx.doi.org/10.1016/S0043-1354(01)00339-6

21. Melder, L. I. The formation and treatment of tar-containing waters in oil-shale processing // The Environmentally Sound Management of Low Grade Fuels. Proceedings of an international Seminar. SEI / G. S. Aslanian, et al. (ed.). Sweden: Stockholm, 1992. P. 247–264.

22. Orupõld, K., Tenno, T., Henrysson, T. Biological lagooning of phenols-con­taining oil shale ash heaps leachate // Water Res. 2000. Vol. 34, No. 18. P. 4389–4396.
http://dx.doi.org/10.1016/S0043-1354(00)00210-4

23. Lukasse, L. J. S., Keesman, K. J., van Straten, G. Estimation of BODst, respira­tion rate and kinetics of activated sludge // Water Res. 1997. Vol. 31, No. 9. P. 2278–2286.
http://dx.doi.org/10.1016/S0043-1354(97)00047-X

24. Ellis, T. G., Barbeau, D. S., Smets, B. F., Grady, C. P.  L. Respirometric technique for determination of extant kinetic parameters describing bio­degradation // Water Environ. Res. 1996. Vol. 68, No. 5. P. 917–926.
http://dx.doi.org/10.2175/106143096X127929

25. Palmer, T. Understanding Enzymes, 4th ed. - London, 1995.

26. Spain, J. C., Gibson, D. T. Oxidation of substituted phenols by Pseudomonas putida F1 and Pseudomonas sp. strain JS6 // Appl. Environ. Microbiol. 1988. Vol. 54, No. 6. P. 1399–1404.

27. Smith, M. R., Ewing, M., Ratledge, C. The interactions of various aromatic substrates degraded by Pseudomonas sp. NCIB 10643: synergistic inhibition of growth by two compounds that serve as growth substrates // Appl. Microbiol. Biot. 1991. Vol. 34, No. 4. P. 536–538.

28. Millette, D., Barker, J. F., Comeau, Y., Butler, B. J., Frind, E. O., Clément, B., Samson, R. Substrate interaction during aerobic biodegradation of creosote-related compounds: a factorial batch experiment // Environ. Sci. Technol. 1995. Vol. 29, No. 8. P. 1944–1952.
http://dx.doi.org/10.1021/es00008a011

29. Yoon, H., Klinzing, G., Blanch, H. W. Competition for mixed substrates by microbial population // Biotechnol. Bioeng. 1977. Vol. 19, No. 8. P. 1193–1210.
http://dx.doi.org/10.1002/bit.260190809

30. Abuhamed, T., Bayraktar, E., Mehmetoglu, T., Mehmetoglu, Ü. Kinetics model for growth of Pseudomonas putida F1 during benzene, toluene and phenol biodegradation // Process Biochem. 2004. Vol. 39, No. 8. P. 983–988.
http://dx.doi.org/10.1016/S0032-9592(03)00210-3

31. Hibbert, D. B., Gooding, J. J. Data Analysis for Chemistry: An Introductory Guide for Students and Laboratory Scientists. – Oxford University Press, 2006.

32. Magbanua, B. S., Hoover, P. A., Campbell, P. J., Bowers, A. R. The effect of cosubstrates on phenol degradation kinetics // Water Sci. Technol. 1994. Vol. 30, No. 9. P. 67–77.

33. International Organization for Standardization, International Electrotechnical Commission. ISO/IEC Guide 99: International Vocabulary of Metrology – Basic and General Concepts and Associated Terms (VIM). – Geneva, 2007.

34. International Organization for Standardization, International Standard ISO 5815-1: Water Quality – Determination of biochemical oxygen demand after n days (BODn). Part 1: Dilution and seeding method with allylthiourea addition. – Geneva, 2003.

35. Riefler, R. G., Ahlfeld, D. P., Smets, B. F. Respirometric assay for biofilm kinetics estimation: parameter identifiability and retrievability // Biotechnol. Bioeng. 1998. Vol. 57, No. 1. P. 35–45.
http://dx.doi.org/10.1002/(SICI)1097-0290(19980105)57:1<35::AID-BIT5>3.0.CO;2-W

36. Healey, F. P. Slope of the Monod equation as an indicator of advantage in nutrient competition // Microb. Ecol. 1980. Vol. 5, No. 4. P. 281–286.
http://dx.doi.org/10.1007/BF02020335

37. Páca, J., Martius, G. G. S. Inhibition concentration of phenolic substances under different cultivation conditions. Part I: Phenol oxidation by mixed microbial population in a model system // Acta Hydroch. Hydrob. 1996. Vol. 24, No. 3. P. 127–131.

38. Watanabe, K., Hino, S., Onodera, K., Shin-Ichi, K., Takahashi, N. Diversity in kinetics of bacterial phenol-oxygenating activity // J. Ferment. Bioeng. 1996. Vol. 81, No. 6. P. 560–563.
http://dx.doi.org/10.1016/0922-338X(96)81481-4

39. Hutchinson, D. H., Robinson, C. W. Kinetics of the simultaneous batch degrada­tion of p-cresol and phenol by Pseudomonas putida // Appl. Microbiol. Biot. 1988. Vol. 29, No. 6. P. 599–604.

40. Ohta, Y., Higgins, I. J., Ribbons, D. W. Metabolism of resorcinylic compounds by bacteria. Purification and properties of orcinol hydroxylase from Pseudomonas putida 01. // J. Biol. Chem. 1975. Vol. 250, No. 10. P. 3814–3825.

41. Ellis, L. B. M., Roe, D., Wackett, L. P. The University of Minnesota bio­catalysis/biodegradation database: the first decade // Nucleic Acids Res. 2006. Vol. 34 (Suppl. 1). P. D517–D521.
http://dx.doi.org/10.1093/nar/gkj076

42. Chapman, P. J., Ribbons, D. W. Metabolism of resorcinylic compounds by bacteria: orcinol pathway in Pseudomonas putida // J. Bacteriol. 1976. Vol. 125, No. 3. P. 975–984.

43. Chapman, P. J., Ribbons, D. W. Metabolism of resorcinylic compounds by bacteria: alternative pathways for resorcinol catabolism in Pseudomonas putida // J. Bacteriol. 1976. Vol. 125, No. 3. P. 985–998.

44. Ohta, Y., Ribbons, D. W. Bacterial metabolism of resorcinylic compounds: purification and properties of orcinol hydroxylase and resorcinol hydroxylase from Pseudomonas putida ORC // Eur. J. Biochem. 1976. Vol. 61, No. 1. P. 259–269.
http://dx.doi.org/10.1111/j.1432-1033.1976.tb10019.x

45. Tzoris, A., Cane, D., Maynard, P., Hall, E. A. H. Tuning the parameters for fast respirometry // Anal. Chim. Acta. 2002. Vol. 460, No. 2. P. 257–270.
http://dx.doi.org/10.1016/S0003-2670(02)00190-3

Back to Issue