ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
THERMOGRAVIMETRIC ANALYSIS OF THE COMBUSTION CHARACTERISTICS OF OIL SHALE SEMI-COKE/BIOMASS BLENDS; pp. 284–295
PDF | doi: 10.3176/oil.2011.2.03

Authors
WANG QING, XU HAO, LIU HONGPENG, JIA CHUNXIA, BAI JINGRU
Abstract
The combustion behavior of different kinds of biomass (corn stalks, straw, rice husks, sawdust) and oil shale semi-coke and their blends was inves­tigated. Non-isothermal thermogravimetric experiments were performed with different atmospheres (N2:O2=8:2, N2:O2=7:3, N2:O2=6:4) at a constant heating rate of 20 °C/min. The effect of oxygen concentration on the pattern of combustion was analyzed. The experimental results showed that the igni­tion and burnout temperatures of biomass and semi-coke decreased with increasing oxygen concentrations. Aside from the weight loss during moisture evaporation, the combustion of individual biomass and semi-coke samples took place in two stages. In the first stage, the release and combus­tion of volatiles took place, while in the second stage, the combustion of fixed carbon occurred. The combustion of blends took place in three stages (again aside from moisture evaporation) corresponding to the sum of the individual stages of combustion of biomass and semi-coke. Several combus­tion reaction kinetics mechanisms were tested using the Coats–Redfern Method in order to find the mechanisms responsible for sample combustion. The activation energy was determined assuming that single separate reactions occur in each stage of thermal con­version. The results showed that a first-order chemical reaction model pro­vided the best characterization of the first stage of biomass oxidation and oil shale semi-coke combustion. However, diffusion was found to be responsible for the second stage of biomass and semi-coke combustion. For blends, a first-order chemical reaction provided the best model for the first and second stages of combustion whereas a diffusion mechanism was the best for the third stage.
References

  1. Qian, J. L., Yi, L., Wang, J .Q. Oil Shale-Oil Supplements Energy. – Beijing: China Petrochemical Press, 2008 [in Chinese].

  2. Wang, Q., Xu, F., Bai, J. R. Study on basic physical and chemical characteristics of Huadian oil shale // Journal of Jilin University (Earth Science Edition). 2006. Vol. 36, No. 6. P. 720–724.

  3. Wang, Q., Wu, X. H., Sun, B. Z. Combustion reaction kinetics study of Huadian oil shale semi-coke // Proceedings of the CSEE. 2006. Vol. 26. No. 7. P. 29–34 [in Chinese].

  4. Wang, Q., Sun, B. Z., Wu, X. H. Influence of retorting temperature on combus­tion characteristics and kinetic parameters of oil shale semicoke // Oil Shale. 2006. Vol. 23, No. 4. P. 328–339.

  5. Wang, Q., Sun, B. Z., Wu, X. H. Study on combustion characteristics of mixtures of Huadian oil shale and semicoke // Oil Shale. 2007. Vol. 24, No. 2. P. 135–145.

  6. Wang, Q., Wang, H. G., Sun, B. Z. Interactions between oil shale and its semi-coke during co-combustion // Fuel. 2009. Vol. 88, No. 8. P. 1520–1529.

  7. Trikkel, A., Kuusik, R., Martins, A., Pihu, T., Stencel, J. M. Utilization of Estonian oil shale semicoke // Fuel Process. Technol. 2008. Vol. 89, No. 8. P. 756–763.
doi:10.1016/j.fuproc.2008.01.010

  8. Arro, H., Prikk, A., Pihu, A., Opik, I. Utilization of semi-coke of Estonian shale oil industry // Oil Shale. 2002. Vol. 19, No. 2. P. 117–125.

  9. Dai, J., Grace, J. R. Biomass screw feeding with tapered and extended sections // Powder Technol. 2008. Vol. 186, No. 1. P. 56–64.
doi:10.1016/j.powtec.2007.10.033

10. Gil, M. V., Casal, D., Pevida, C., Pis, J. J., Rubiera, F. Thermal behaviour and kinetics of coal/biomass blends during co-combustion // Bioresource Technol. 2010. Vol. 101, No. 14. P. 5601–5608.
doi:10.1016/j.biortech.2010.02.008

11. Baxter, L. Biomass-coal co-combustion: opportunity for affordable renewable energy // Fuel. 2005. Vol. 84, No. 10. P. 1295–1302.

12. Haykiri-Acma, H., Yaman, S. Effect of biomass on burnouts of Turkish lignites during co-firing // Energ. Convers. Manage. 2009. Vol. 50, No. 9. P. 2422–2427.
doi:10.1016/j.enconman.2009.05.026

13. Liu, N. A., Fan, W. C., Dobashi, R., Huang, L. S. Kinetic modeling of thermal decomposition of natural cellulosic materials in air atmosphere // J. Anal. Appl. Pyrol. 2002. Vol. 63, No. 2. P. 303–325.
doi:10.1016/S0165-2370(01)00161-9

14. Fang, M. X., Shen, D. K., Li, Y. X., Yu, C. J., Luo, Z. Y., Cen, K. F. Kinetic study on pyrolysis and combustion of wood under different oxygen concentrations by using TG-FTIR analysis // J. Anal. Appl. Pyrol. 2006. Vol. 77, No. 1. P. 22–27.
doi:10.1016/j.jaap.2005.12.010

15. Yu, Z. S., Ma, X. Q., Liu, A. Thermogravimetric analysis of rice and wheat straw catalytic combustion in air-and oxygen-enriched atmospheres // Energ. Convers. Manage. 2009. Vol. 50, No. 3. P. 561–566.
doi:10.1016/j.enconman.2008.10.022

16. Luo, S. Y., Xiao, B., Hu, Z. Q., Liu S. M., Guan, Y. W. Experimental study on oxygen-enriched combustion of biomass micro fuel // Energy. 2009. Vol. 34, No. 11. P. 1880–1884.

17. Rubiera, F., Arenillas, A., Fuente, E., Miles, N., Pis, J. J. Effect of the grinding behaviour of coal blends on coal utilisation for combustion // Powder Technol. 1999. Vol. 105, No. 1–3. P. 351–356.
doi:10.1016/S0032-5910(99)00158-8

18. Yu Qiumei, Pang Yajun, Chen Hongguo. Determination of ignition points in coal-combustion tests // North China Electric Power (China). 2001. Vol. 7. P. 9–10 [in Chinese].

19. Nie, Q. H., Sun, S. Z., Li, Z. Q. Thermogravimetric analysis on the combustion characteristics of brown coal blends // Combust. Sci. Technol. 2001. Vol. 7, No. 1. P. 71–76.

20. Hu, R. Z., Gao, S. L., Zhao, F. Q. Thermal Analysis Kinetics. – Beijing: Science Press, 2007 [in Chinese].

21. López-Fonseca, R., Landa, I., Elizundia, U., Gutiérrez-Ortiz, M. A., González-Velasco, J. R. Thermokinetic modeling of the combustion of carbonaceous particulate matter  // Combust. Flame. 2006. Vol. 144. No. 1-2. P. 398–406.
doi:10.1016/j.combustflame.2005.08.012

22. Alshehri, S. M., Monshi, M. A. S., Abd El-Salam, N. M., Mahfouz, R. M. Kinetics of the thermal decomposition of γ-irradiated cobaltous acetate // Thermochimica Acta. 2000. Vol. 363, No. 1–2. P. 61–70.
doi:10.1016/S0040-6031(00)00602-X
Back to Issue