ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
RETORTING PROPERTIES OF OIL SHALE FOUND AT THE NORTHERN FOOT OF BOGDA MOUNTAIN, CHINA; pp. 19–28
PDF | doi: 10.3176/oil.2011.1.03

Authors
SHU TAO, DA-ZHEN TANG, HAO XU, JIA-LI CAI, MING-FU GOU, ZHEN-LONG CHEN
Abstract
On the basis of pyrolysis gas chromatography (PGC) technique, the retort­ing process of oil shale found at the northern foot of Bogda Mountain was simulated by a step-by-step procedure. The dynamic changes in recovery of all kinds of oil (gas) products, and their total recovery rate at different temperature ranges during pyrolysis were studied. Meanwhile, the reasons for these changes were analyzed, and the properties of oil shale were discussed. This paper provides some parameters to evaluate these properties precisely. The results show that the retorting process and the corresponding pyrolysis occur in three stages: 1) a few hydrocarbon products are generated below 410 °C, their amount increasing slowly with temperature; 2) the amount of hydrocarbon products increases rapidly in the range of 450–510 °C, accounting for 70% of the total, and the yield has maximum at about 490 °C; 3) gaseous hydrocarbons are the main products above 510 °C, whereas their yield is small. Oil shale found at northern foot of Bogda Mountain is characterized by the advantage to yield light oil. In future processing and refining, the temperature should be maintained between 450 °C and 510 °C to recover oil (gas) products, especially light oil, effectively. Original hydrocarbon-generating potential is the principal factor in controlling the behavior of oil shale during the process. The greater the original hydrocarbon-generating potential, the larger the amount of heavy oil products generated at the high-temperature stage.
References

  1. Yefimov, Y., Doilov, S. Efficiency of processing oil shale in 1000 ton-per-day retort using different arrangement of outlets for oil vapors // Oil Shale. 1999. Vol. 16, No. 4S. P. 455–463.

  2. Veiderma, M. Estonian oil shale-resources and usage // Oil Shale. 2003. Vol. 20, No. 3S. P. 295–303.

  3. Qian, J. L., Wang, J. Q., Li, S. Y. Comparison of current world’s commercial oil shale retort technologies // International Symposium on Oil Shale, 18–21 November 2002, Tallinn, Estonia. Abstract. Tallinn: [s. n.]. 2002.

  3. Zhang, Q. M., Guan, J., He, D. M. Typical technologies for oil shale retorting // Journal of Jilin University (Earth Science Edition). 2006. Vol. 36, No. 6. P. 1019–1026 [in Chinese].

  4. Hou, X. L. Shale Oil Industry in China. – Beijing: Petroleum Industry Press, 1984. P. 78–99 [in Chinese].

  5. Allred, V. D. Oil Shale Processing Technology. – New Jersey: The Center for Processional Advancement, East Brunswick, 1982.

  6. Golubev, N. Solid oil heat carrier technology for oil shale retorting // Oil Shale. 2003. Vol. 20, No. 3S. P. 324–332.

  7. Kann, J., Elenurm, A., Rohtla, I., Golubev, N., Kaidalov, A., Kindorkin, B. About thermal low-temperature processing of oil shale by solid heat carrier method // Oil Shale. 2004. Vol. 21, No. 3. P. 195–203.

  8. Schmidt, S. J. New directions for shale oil: Path to a secure new oil supply well into this century  [on the example of Australia]// Oil Shale. 2003. Vol. 20, No. 3S. P. 333–346.

  9. Levent, D., Tulay, D. Effect of heating rate on pyrolysis kinetics of Göynük oil shale // Energ. Source. 2002. Vol. 24, No. 10. P. 931–936.

10. Dogan, O. M., Uysal, B. Z. Non-isothermal pyrolysis of three Turkish oil shales // Fuel. 1996. Vol. 75, No. 12. P. 1424–1428.

11. Thakur, D. S., Nuttall Jr., H. E. Kinetics of pyrolysis Moroccan oil shale by thermogravimetry //Ind. Eng. Chem. Res. 1987.Vol. 26, No. 7. P. 1351–1356.
doi:10.1021/ie00067a015

12. Tao, S., Tang, D. Z., Wang, D. Y., Xu, H., Li, J. J., Lin, W. J. Simulation of hydrocarbon generation and expulsion of low maturity oil shale // Earth Science Frontiers. 2009. Vol. 16, No. 3. P. 356–363 [in Chinese].

13. k, M. V., Pamir, R. Non-isothermal pyrolysis and kinetics of oil shales // J. Therm. Anal. Calorim. 1999. Vol. 56, No. 2. P. 953–958.
doi:10.1023/A:1010107701483

14. Kök, M. V. Thermal investigation of Seyitomer oil shale // Thermochim. Acta. 2001. Vol. 369, No. 1–2. P. 149–155.

15. Kök, M. V. Evaluation of Turkish oil shales - thermal analysis approach // Oil Shale. 2001. Vol. 18, No. 2. P. 131–138.

16. Kök, M. V., Pamir, R. Pyrolysis kinetics of oil shales determined by DSC and TG/DTG // Oil Shale. 2003. Vol. 20, No. 1. P. 57–68.

17. Kök, M. V. Heating rate effect on the DSC kinetics of oil shales // J. Therm. Anal. Calorim. 2007. Vol. 90, No. 3. P. 817–821.
doi:10.1007/s10973-007-8240-3

18. Kök, M. V., Guner, G., Bagci, S. Application of EOR techniques for oil shale fields (in-situ combustion approach) // Oil Shale. 2008. Vol. 25, No. 2. P. 217–225.
doi:10.3176/oil.2008.2.04

19. Hu, W. R., Zhai, G. M., Lei, Q., Li, J. M. The Exploration and Development of Unconventional Oil and Gas in New Field and Technique. – Beijing: Publish­ing House of Oil Industry, 2008. P. 1–68 [in Chinese].

20. Qian, J. L., Wang, J. Q., Li, S. Y. Oil shale development in China // Oil Shale.2003. Vol. 20, No. 3S. P. 356–359.

21. Tao, S., Tang, D. Z., Li, J. J., Xu, H., Li, S., Chen, X. Z. Indexes in evaluating the grade of Bogda Mountain oil shale in China // Oil Shale. 2010. Vol. 27, No. 2. P. 179–189.
Back to Issue