ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
THE INFLUENCE OF MICROWAVE DRYING ON PHYSICOCHEMICAL PROPERTIES OF LIUSHUHE OIL SHALE; pp. 29–41
PDF | doi: 10.3176/oil.2011.1.04

Authors
WANG QING, ZHANG LIANG, BAI JINGRU, LIU HONGPENG, LI SHAOHUA
Abstract
In this paper, microwave drying of Liushuhe oil shale was studied and compared with conventional drying process. Oil shale was treated in a microwave oven at four different microwave energy levels. The drying trial showed that the drying rate of microwave drying was much higher than that of conventional hot air drying. Attention has been given to the influence of microwave treatment on the physicochemical properties of oil shale. Samples dried at 550 W for 15 min (MD3) were chosen as the representative ones for microwave drying. The grindability of oil shale samples was characterized by Hardgroove grindability index (HGI). It was found that significant increases in oil shale grindability could be achieved after exposure to microwave energy. The pore structure of raw oil shale (OS) and dried samples (CD and MD3) was measured by the method of low-temperature adsorption of nitrogen. Specific surface area was calculated based on Brunauer–Emmett–Teller (BET) equation, and pore size distribution was calculated by Barrette–Joynere–Halenda (BJH) method. The results showed that the specific surface area and specific pore volume of CD and MD3 increased considerably, and microwave drying led to the formation of mesopores. Fourier transform infra­red (FTIR) spectra indicated that microwave drying had no significant effect on the chemical property of oil shale.
References

  1. Külaots, I., Goldfarb, J. L., Suuberg, E. M. Characterization of Chinese, American and Estonian oil shale semicokes and their sorptive potential // Fuel. 2010. Vol. 89, No. 11. P. 3300–3306.

  2. Wang, Q., Hao, Z. J., Sun, J., Qin, Y. K. Operating performance analysis of an oil shale fired circulating fluidized bed boiler of the highest capacity currently in operation in China // Journal of Engineering for Thermal Energy & Power. 2001. Vol. 16, No. 5. P. 513–516 [in Chinese].

  3. Holopainen, H. Experience of oil shale combustion in Ahlstrom pyroflow CFB-boiler // Oil Shale. 1991. Vol. 8, No. 3. P. 194–209.

  4 Dickson, B. C., Baker, L. A. Rotary drying of Stuart oil shale // Fuel. 1988. Vol. 67, No. 10. P. 1400–1402.

  5. Lane, D., Ramjas, S., Haynes, B. S. Drying kinetics of Stuart oil shale // Fuel. 1988. Vol. 67, No. 10. P. 1321–1326.

  6. Tamimi, A., Uysal, B. Z. Drying characteristics of oil-shale // Int. J. Miner. Process. 1992. Vol. 34, No. 1–2. P. 137–148.
doi:10.1016/0301-7516(92)90021-N

  7. Walde, S. G., Balaswamy, K., Velu, V., Rao, D. G. Microwave drying and grind­ing characteristics of wheat (Triticum aestivum) // J. Food Eng. 2002. Vol. 55, No. 3. P. 271–276.
doi:10.1016/S0260-8774(02)00101-2

  8. Ozkan, I. A., Akbudak, B., Akbudak, N. Microwave drying characteristics of spinach // J. Food Eng. 2007. Vol. 78, No. 2. P. 577–583.
doi:10.1016/j.jfoodeng.2005.10.026

  9. Al-Harahsheh, M., Al-Muhtaseb, A. H., Magee, T. R. A. Microwave drying kinetics of tomato pomace: Effect of osmotic dehydration // Chem. Eng. Process. 2009. Vol. 48, No. 1. P. 524–531.
doi:10.1016/j.cep.2008.06.010

10. Hansson, L., Antti, A. L. The effect of microwave drying on Norway spruce woods strength: a comparison with conventional drying // J. Mater. Process. Tech. 2003. Vol. 141, No. 1. P. 41–50.
doi:10.1016/S0924-0136(02)01102-0

11. Wang, X. H., Chen, H. P., Luo, K., Shao, J. A., Yang, H. P. The influence of micro­wave drying on biomass pyrolysis // Energ. Fuel. 2008. Vol. 22, No. 1. P. 67–74.

12. Marland, S., Han, B., Merchant, A., Rowson, N. The effect of microwave radiation on coal grindability // Fuel. 2000. Vol. 79, No. 11. P. 1283–1288.

13. Miknis, F. P., Netzel, D. A., Turner, T. F., Wallace, J. C., Butcher, C. H. Effect of different drying methods on coal structure and reactivity toward liquefaction // Energ. Fuel. 1996. Vol. 10, No. 3. P. 631–640.

14. Sharma, G. P., Prasad, S. Drying of garlic (Allium sativum) cloves by micro­wave-hot air combination // J. Food Eng. 2001. Vol. 50, No. 2. P. 99–105.
doi:10.1016/S0260-8774(00)00200-4

15. Soysal, Y. Microwave drying characteristics of parsley // Biosyst. Eng. 2004. Vol. 89, No. 2. P. 167–173.

16. Rajeshwar, K., Inguva R. Application of dielectric spectroscopy to chemical characterization of oil shales // Fuel. 1985. Vol. 64, No. 7. P. 931–937.

17. Nottenburg, R., Rajeshwar, K., Freeman, M., Dubow, J. Effect of pore water and adsorbed moisture on the dielectric properties of green river oil shale // Thermochim. Acta. 1979. Vol. 31, No. 1. P. 39–36.
doi:10.1016/0040-6031(79)80005-2

18. Kumar, P., Sahoo, B. K., De, S., Kar, D. D., Chakraborty, S., Meikap, B. C. Iron ore grindability improvement by microwave pre-treatment // J. Ind. Eng. Chem. 2010. Vol. 16, No. 5. P. 805–812.
doi:10.1016/j.jiec.2010.05.008

19. Schrodt, J. T., Ocampo, A. Variations in the pore structure of oil shales during retorting and combustion // Fuel. 1984. Vol. 63, No. 11. P. 1523–1527.

20. Sun, B. Z., Wang, Q., Li, S. H., Wang, H. G. Analysis of specific area and porous structure of oil shale and semi-coke // Journal of Power Engineering. 2008. Vol. 28, No. 1. P. 163–167 [in Chinese].

21. Maskan, M. Drying, shrinkage and rehydration characteristics of kiwifruits during hot air and microwave drying // J. Food Eng. 2001. Vol. 48, No. 2. P. 177–182.
doi:10.1016/S0260-8774(00)00155-2

22. Altun, N. E., Hicyilmaz, C., Hwang, J. Y., Bagci, A. S. Evaluation of a Turkish low quality oil shale by flotation as a clean energy source: Material charac­terization and determination of flotation behavior // Fuel Process. Technol. 2006. Vol. 87, No. 9. P. 783–791.
doi:10.1016/j.fuproc.2006.04.001

23. Dominguez, A., Menendez, J. A., Inguanzo, M., Pis, J. J. Sewage sludge drying using microwave energy and characterization by IRIF // Afinidad. 2004. Vol. 61, No. 512. P. 280–285.

24. Lazzari, M., Chiantore, O. Drying and oxidative degradation of linseed oil // Polym. Degrad. and Stabil. 1999. Vol. 65, No. 2. P. 303–313.
doi:10.1016/S0141-3910(99)00020-8
Back to Issue