ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
NOVEL APPROACHES TO BIOINDICATION OF HEAVY METALS IN SOILS CONTAMINATED BY OIL SHALE WASTES; pp. 424–431
PDF | doi: 10.3176/oil.2009.3.07

Authors
L. NEI, Jaanus Kruusma, M. IVASK, A. KUU
Abstract
The major sources of heavy metal pollution in Estonia are oil shale industry and oil shale combustion. There is an utmost need to monitorsoil pollu­tion with heavy metals in this region. Earthworms are good accumulators of heavy metals and can be used as bioindicators. Endogeic species Apor­recto­dea caliginosa and Aporrectodea rosea as well as anecic species Lumbricus terrestris are good bioindicators for Zn(II) and Cu(II) ions in soils con­taminated by oil waste or fly ash because of the high level of accumulation of these metals in their tissues. Electrochemical methods were used for the determination of heavy metal ions in earthworms as the amount of the sample needed for the analytical work is from 10 to 100 times smaller, when compared to the traditional methods.
References

  1. Mhatre, G. N., Pankhurst, C. E. Bioindicators to detect contamination of soils with special reference to heavy metals // Biological Indicators of Soil Health and Sustainable Productivity / Pankhurst, C. E., Doube, B. M., Cupta, V. V. S. R. (eds.). New York: CAB International, 1997. P. 349–369.

  2. Frey, T. Snow Environment. – Tartu: Trükk OÜ Vali Press, 1998 [in Estonian].

  3. Gobat, J.-M., Aragno, M., Matthey, W. The Living Soil. Fundamentals of Soil Science and Soil Biology. – Enfield, Plymouth, 2004.

  4. Elliott, E. T.  Rationale for Developing Bioindicators of Soil Health // Bio­logical indicators of soil health / Pankhurst, C. E., Doube, B. M., Cupta, V. V. S. R. (eds.). UK: Wallingford CAB Publishing, 1997. P. 49–78.

  5. Van Straalen, N. M. The use of soil invertebrates in ecological surveys of contaminated soils // Vital Soil: function, value and properties / P. Doelman, H. J. P. Eijsackers (eds.). Developments in Soil Science. 2004. Vol. 29. P. 159–195.

  6. Morgan, J. E., Morgan, A. J. The accumulation of metals (Cd, Cu, Pb, Zn and Ca) by two ecologically contrasting earthworm species (Lumbricus rubellus and Aporrectodea caliginosa): implications for ecotoxicological testing // Appl. Soil. Ecol. 1999. Vol. 13, No. 1. P. 9–20.
doi:10.1016/S0929-1393(99)00012-8

  7. Hinton, J. J., Veiga, M. M. Earthworms as bioindicators of mercury pollution from mining and other industrial activities // Geochemistry: Exploration, Environment, Analysis. 2002. Vol. 2, No. 3. P. 269–274.

  8. Lowe, C. N., Butt, K. R. Earthworm culture, maintenance and species selection in chronic ecotoxicological studies: A critical review // Eur. J. Soil Biol. 2007. Vol. 43S, P. S281-S288.
doi:10.1016/j.ejsobi.2007.08.028

  9. Scullion, J., Mohammed, A. R. A., Richardson, H. Effect of storage and reinstate­ment procedures on earthworm populations in soils affected by opencast coal mining // J. Appl. Ecol. 1988. Vol. 25, No. 1. P. 233–240.
doi:10.2307/2403621

10. Cooke, J. A., Johnson, M. S. Ecological restoration of land with particular reference to the mining of metals and industrial minerals: A review of theory and practice // Environ. Rev. 2002. Vol. 10, No. 1. P. 41–71.
doi:10.1139/a01-014

11. Gupta, S. K., Srivastava, R., Mathur, N., Saxena, P. N. The comparative effects of metals on the hatching of earthworm cocoons // ATLA. 2006. Vol. 34, No. 5. P. 491–498.

12. Ash, C. P. J., Lee, D. L. Lead, cadmium, copper and iron in earthworms from roadside sites // Environ. Pollut. Ser. A. 1980. Vol. 22. P. 59–67.
doi:10.1016/0143-1471(80)90082-3

13. Ireland, M. P., Wooton, R. J. Variations in the lead, zinc, and calcium content of Dendrobaena rubida (Oligochaeta) in a base metal mining area // Environ. Pollut. 1976. Vol. 10. P. 201–208.
doi:10.1016/0013-9327(76)90037-9

14. Terhivuo, J., Pankakoski, E., Hyvarinen, H., Koivisto, I. Pb uptake by eco­logically dissimilar earthworm (Lumbricidae) species near a lead smelter in south Finland // Environ. Pollut. 1994. Vol. 85. P. 87–96.
doi:10.1016/0269-7491(94)90241-0

15. Gunn, A. The use of mustard to estimate earthworm population // Pedobiologia. 1992. Vol. 36. P. 65–67.

16. Graff, O. Earthworms of Germany. Regenwürmer Deutschlands. – Institut für Humuswirtschaft der Forschungsanstalt für Landwirtschaft Braunschweig-Völken­rode. Hannover: Verlag M. & H.Schaper, 1953.

17. Timm, T. A Guide to the Estonian Annelida. Naturalist's Handbooks 1. – Estonian Academy. Publishers, Tartu-Tallinn, 1999 [in Estonian].

18. Van Hook, R. I. Cadmium, lead and zinc distribution between earthworms and soils. Potential for biological accumulation // Bull. Environ. Contam. Toxicol. 1974. Vol. 12, No. 4. P. 509–511.
doi:10.1007/BF01684990

19. Dabeka, R. W. Graphite-furnace atomic absorption spectrometric determination of lead and cadmium in foods after solvent extraction and stripping // Anal. Chem. 1979. Vol. 51, No. 7. P. 902–907.
doi:10.1021/ac50043a028

20. Moreno, M. A., Marin, C., Vinagre, F., Ostapczuk, P. Trace element levels in whole blood samples from residents of the city Badajoz, Spain // Sci. Total Environ. 1999. Vol. 229, No. 3. P. 209–215.
doi:10.1016/S0048-9697(99)00074-1

21. Lanno, R., Wells, J., Conder, J., Bradham, K., Basta, N. The bioavailability of chemicals in soil for earthworms // Ecotox. Environ. Safety. 2004. Vol. 57, No. 1. P. 39–47.
doi:10.1016/j.ecoenv.2003.08.014

22. Eijsackers, H. Soil fauna and soil microflora as possible indicators of soil pollution // Environ. Monit. Assess. 1983. Vol. 3, No. 3–4. P. 307–316.
doi:10.1007/BF00396225

23. Hopkin, S. P. In situ biological monitoring of pollution in terrestrial and aquatic ecosystems // Handbook of ecotoxicology. Vol. 1 / Calow, P. (ed). Oxford: Blackwell Scientific Publications, 1993. P. 397–427.

24. Cortet, J., Vauflery, A. G.-De., Poinsot-Balaguer, N., Gomot, L., Texier, C., Cluzeau, D. The use of invertebrate soil fauna in monitoring pollutant effects // Eur. J. Soil Biol. 2000. Vol. 35, No. 3. P. 115–134.
doi:10.1016/S1164-5563(00)00116-3

25. Bouche, M. B. Strategies lombriciennes // Soil organisms as components of ecosystem / U. Lohm, T. Persson (eds.). Ecol.Bull. Vol. 25, Stockholm, 1977. P. 122–132.

26. Curry, J. P., Schmidt, O. The feeding ecology of earthworms – A review // Pedobiologia. 2007. Vol. 50, No. 6. P. 463–477.

27. Dai, J., Becquer, T., Rouiller, J. H., Reversat, G., Bernhard-Reversat, F., Nahmani, J., Lavelle, P. Heavy metal accumulation by two earthworm species and its relationship to total and DTPA-extractable metals in soils // Soil Biol. Biochem. 2004. Vol. 36, No. 1. P. 91–98.
doi:10.1016/j.soilbio.2003.09.001

28. Ma, W. C. Estimating heavy metal accumulation in oligochaete earthworms: a meta-analysis of field data // Bull. Environ. Contam. Toxicol. 2004. Vol. 72, No. 4. P. 663–670.
doi:10.1007/s00128-004-0296-1

29. Lee, K. E. Earthworms: Their Ecology and Relationships with Soils and Land Use. – Sydney: Academic Press, 1985.

30. Nahmani, J., Lavelle, P. Effects of heavy metal pollution on soil macrofauna in a grassland of Northern France // Eur. J. Soil Biol. 2002. Vol. 38, No. 3–4. P. 297–300.
doi:10.1016/S1164-5563(02)01169-X
Back to Issue