ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
EXPERIMENT AND NEURAL NETWORK MODEL OF PRIMARY FRAGMENTATION OF OIL SHALE IN FLUIDIZED BED; pp. 114–124
PDF | doi: 10.3176/oil.2009.2.04

Authors
ZHIGANG CUI, Xiangxin Han, Xiumin Jiang, Jianguo Liu
Abstract

In this paper, the effect of fluidized bed temperature on primary fragmenta­tion of Huadian oil shale was investigated experimentally in thermal state using a small-scale fluidized bed with N2 as fluidizing gas. The fluidized-bed temperatures changed from 600 °C to 1000 °C. Experimental results indicate that the fluidized bed temperature is an important factor of primary fragmentation of oil shale, and that higher bed temperature results in severer fragmentation. The laminated structure and high ash content may contribute to the primary fragmentation characteristics of Huadian oil shale. The thermal stress fragmentation and devolatilization-induced fragmentation have little effect on small oil shale particles. Furthermore, the experimental data were treated by a neural network method, and a Back Propagation network model for primary fragmentation of oil shale was set up through network learning and validated by experimental data.

References

  1. Jiang, X. M., Liu, D. C., Chen, H. P. et al. Experimental investigation on oil shale circulating fluidized bed boiler // Oil Shale. 2001. Vol. 18, No. 1. P. 73–83.

  2. Jiang, X. M., Han, X. X., Cui, Z. G. et al. Flow structure and combustion characteristic of 65 t/h oil shale-fired circulating fluidized bed riser. 1: Dense phase // Ind. Eng. Chem. Res. 2006. Vol. 45, No. 12. P. 4329–4334.
doi:10.1021/ie060005q

  3. Han, X. X., Jiang, X. M., Cui, Z. G. Flow structure and combustion charac­teristic of 65 t/h oil shale-fired circulating fluidized bed riser 2: Dilute phase // Chem. Eng. Sci. 2006. Vol. 61, No. 8. P. 2533–2539.
doi:10.1016/j.ces.2005.11.020

  4. Jiang, X. M., Han, X. X., Cui, Z. G. Progress and recent utilization trends in combustion of Chinese oil shale // Prog. Energy Combust. Sci. 2007. Vol. 33, No. 6. P. 552–575.
doi:10.1016/j.pecs.2006.06.002

  5. Arro, H., Prikk, A., Pihu, T. Calculation of CO2 emission from CFB boilers of oil shale power plants // Oil Shale. 2006. Vol. 23, No. 4. P. 356–365.

  6. Chirone, R., Massimilla, L. Primary fragmentation in fluidized bed combustion of anthracites // Powder Technol. 1991. Vol. 64, No. 3. P. 249–258.
doi:10.1016/0032-5910(91)80139-A

  7. Stubington, J. F., Moss, B. On the timing of primary fragmentation during bituminous coal particle devolatilisation in a fluidized bed combustor // Can. J. Chem. Eng. 1995. Vol. 73, No. 4. P. 505–509.
doi:10.1002/cjce.5450730410

  8. Solomon, P. R., Serio, M. A., Carangelo, R. M., Markham, J. R. Very rapid coal pyrolysis // Fuel. 1986. Vol. 65, No. 2. P. 182–194.

  9. Basu, P., Greenblatt, J. H., Basu, A. Studies of the fragmentation of different coals in a fluidized bed // J. Energ. Inst. 2005. Vol. 78, No. 1. P. 32–37.
doi:10.1179/174602205X39597

10. Dacombe, P., Pourkashanian, M., Williams, A., Yap, L. Combustion-induced fragmentation behavior of isolated coal particles // Fuel. 1999. Vol. 78, No. 15. P. 1847–1857.

11. Lee, S. H., Kim, S. D., Lee, D. H. Particle size reduction of anthracite coals during devolatilization in a thermobalance reactor // Fuel. 2002. Vol. 81, No. 13. P. 1633–1639.

12. Dakič, D., Honing, G. V., Valk, M. Fragmentation and swelling of various coals during devolatilization in a fluidized bed // Fuel. 1989. Vol. 68, No. 7. P. 911–916.

13. Abdelmounaim, B., Pierre, V. J. The impact of thermal pre-treatment on oil shale attrition and fragmentation in fluidized bed combustion // Exp. Therm. Fluid Sci. 2004. Vol. 28, No. 7. P. 677–682.
doi:10.1016/j.expthermflusci.2003.12.004

14. Al-Otoom, A. Y., Shawabkeh, R. A., Al-Harahsheh, A. M., Shawaqfeh, A. T. The chemistry of minerals obtained from the combustion of Jordanian oil shale // Energy. 2005. Vol. 30, No. 5. P. 611–619.

Back to Issue