ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
STUDY ON PYROLYSIS CHARACTERISTICS OF HUADIAN OIL SHALE WITH ISOCONVERSIONAL METHOD; pp. 148–162
PDF | doi: 10.3176/oil.2009.2.07

Authors
WANG QING, LIU HONGPENG, SUN BAIZHONG, LI SHAOHUA
Abstract

In this research, thermal decomposition of Huadian oil shale was studied by thermogravimetry (TG/DTG) at different heating rates in nitrogen environ­ment. Apparent activation energy of the pyrolysis reaction for three samples has been determined at four heating rates (10, 20, 40, 100 °C/min) using Fried­man’s isoconversional method. Furthermore, the Sestak’s complex mechanism was adopted to address mechanism of oil shale pyrolysis. The results showed that activation energy changes only slightly despite the fact that it is not a constant. In the conversion range of 0.1–0.9, the mean value of activation energies for samples OS1, OS2 and OS3 is 237.6, 249.61 and 242.67 kJ·mol–1, and their standard deviations are 2.3, 3.86 and 4.61, respectively.

References

  1. Kők, M. V.Thermal investigation of Seyitomer oil shale // Thermochim. Acta. 2001. Vol. 369, No. 1–2. P. 149–155.

  2. Wang, Q., Bai, J. R., Sun, B. Z., Sun, J. Strategy of Huadian oil shale comprehensive utilization // Oil Shale. 2005. Vol. 22, No. 3. P. 305–316.

  3. Yu, H. L., Jiang, X. M. Study of pyrolysis property of Huadian oil shale // Journal of Fuel Chemistry and Technology. 2001. Vol. 29, No. 5. P. 450–453 [in Chinese].

  4. Ran, J. Y., Niu, B., Zhang, L. Study on general combustion performance and kinetic characteristics of combustion of coal residue // Proceedings of the CSEE. 2006. Vol. 26, No. 15. P. 58–62 [in Chinese].

  5. Bai, J. R., Wang, Q., Hu, A. J., Sun, B. Z., Li, S. H. The pyrolysis characteristics of Maoming oil shales // Journal of Northeast Dianli University. 2006. Vol. 26, No. 2. P. 73–78 [in Chinese].

  6. Hu, R. Z., Shi, Q. Z. Dynamics of Thermal Analysis. – Beijing: Science Press, 2001 [in Chinese].

  7. Kők, M. V., Senguler, I., Hufnagel, H., Sonel, N. Thermal and geochemical investigation of Seyitomer oil shale // Thermochim. Acta. 2001. Vol. 371, No. 1–2. P. 111–119.

  8. Kők, M. V., Pamir, R. Pyrolysis kinetics of oil shales determined by DSC and TG/DTG // Oil Shale. 2003. Vol. 20, No. 1. P. 57–68.

  9. Jaber, J. O., Probert, S. D. Non-isothermal thermogravimetry and decomposi­tion kinetics of two Jordanian oil shales under different processing conditions // Fuel Process. Technol. 2000. Vol. 63, No. 1. P. 57–70.
doi:10.1016/S0378-3820(99)00064-8

10. Khrasiha, Y. H., Shabib, I. M. Thermal analysis of shale oil using thermogravi­metry and differential scanning calorimetry // Energy Convers. Manage. 2002. Vol. 43, No. 2. P. 229–239.
doi:10.1016/S0196-8904(01)00023-1

11. Jiang, X. M., Liu, D. C., Zheng, C. G. Study of oil shale combustion charac­teristics by thermal analysis method // Proceedings of the CSEE. 2001. Vol. 21, No. 8. P. 55–59 [in Chinese].

12. Wang, Q., Wu, X. H., Sun, B. Z., Bai, J. R., Sun, J. Combustion reaction kinetics study of Huadian oil shale semi-coke // Proceedings of the CSEE. 2006. Vol. 26, No. 7. P. 29–34 [in Chinese].

13. Brown, M. E., Maciejewski, M., Vyazovkin, S. et al. Computational aspects of kinetic analysis. Part A: The ICTAC kinetics project-data, methods and results // Thermochim. Acta. 2000. Vol. 355, No. 1–2. P. 125–143.
doi:10.1016/S0040-6031(00)00443-3

14. Maciejewski, M. Computational aspects of kinetic analysis. Part B: The ICTAC kinetics project – the decomposition kinetics of calcium carbonate revisited, or some tips on survival in the kinetic minefield // Thermochim. Acta. 2000. Vol. 355, No. 1–2. P. 145–154.
doi:10.1016/S0040-6031(00)00444-5

15. Vyazovkin, S. Computational aspects of kinetic analysis. Part C. The ICTAC kinetics project – the light at the end of the tunnel? // Thermochim. Acta. 2000. Vol. 355, No. 1–2. P. 155–163.
doi:10.1016/S0040-6031(00)00445-7

16. Burnham, A. K. Computational aspects of kinetic analysis. Part D: The ICTAC kinetics project – multi-thermal-history model-fitting methods and their relation to isoconversional methods // Thermochim. Acta. 2000. Vol. 355, No. 1–2. P. 165–170.
doi:10.1016/S0040-6031(00)00446-9

17. Roduit, B. Computational aspects of kinetic analysis. Part E: The ICTAC kinetics project – numerical techniques and kinetics of solid state processes // Thermochim. Acta. 2000. Vol. 355, No. 1–2. P. 171–180.
doi:10.1016/S0040-6031(00)00447-0

18. Vyazovkin, S., Wight, C. A. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data // Thermochim. Acta. 1999. Vol. 340–341. P. 53–68.
doi:10.1016/S0040-6031(99)00253-1

19. Williams, P. T., Ahmad, N. Investigation of oil-shale pyrolysis processing condi­tions using thermogravimetric analysis // Appl. Energy. 2000. Vol. 66, No. 2. P. 113–133.
doi:10.1016/S0306-2619(99)00038-0

20. Wang, Q., Sun, B. Z., Hu, A. J., Bai, J. R., Li, S. H. Pyrolysis characteristics of Huadian oil shales // Oil Shale. 2007. Vol. 24, No. 2. P. 147–157.

21. Friedman, H. L. A quick, direct method for the determination of activation energy from thermogravimetric data // J. Polym. Lett. 1966. Vol. 4, No. 5. P. 323–328.
doi:10.1002/pol.1966.110040504

22. Šesták, J., Berggren, G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures // Thermochim. Acta. 1971. Vol. 3, No. 1. P. 1–12.
doi:10.1016/0040-6031(71)85051-7

23. Feng, Y. J., Si, Y. Q., He, D. M. Kinetics of thermal decomposition of solid by thermal analysis // Polymer Materials Science and Engineering. 1997. Vol. 13, No. 2. P. 30–34 [in Chinese].

Back to Issue