ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
UTILIZATION OF LOKPANTA OIL SHALE IN PORTLAND CEMENT MANUFACTURING IN NIGERIA: A THERMODYNAMIC APPROACH; pp. 310–327
PDF | doi: 10.3176/oil.2008.3.03

Authors
O. A. Ehinola, QINSHAN ZHU
Abstract
A thermodynamic model is applied to calculate the amount of oil shale ash (OSA), which could be used as raw material in the manufacturing of ordinary Portland cement (OPC). XRF, XRD and SEM analyses of the materials were carried out, and the thermodynamic properties for pure materials in the CaO-SiO2 system are obtained from literature, database of FACTSAGE and STGE. The main minerals and liquid phase present after blending OSA with cement raw material (employing different blending ratios) at different temperatures indicate that 15 to 20% of OSA would be suitable as clinker material. Temperatures of 1300 and 1400 °C can be used for such a blending ratio due to relatively high amount of C3S and C2S. The XRD and SEM of the blend at 1350 °C further show that C3S and C2S are the dominant species present. Addition of OSA will definitely lower the clinkering tem­perature by 50 to 100 °C. Thermomechanical analysis for the suggested blend ratio shows that the liquid is formed at temperatures higher than 1150 °C.
References
  1. Ekweozor, C. M., Unomah, G. I. First discovery of oil shale in the Benue Trough, Nigeria // Fuel. 1990. Vol. 69, No. 4. P. 502–508.

  2. Sonibare, O. O., Ehinola, O. A., Egashira, E. Thermal and geochemical charac­terization of Lokpanta oil shale, Nigeria // Energy Convers. Manage. 2005. Vol. 46, No. 15–16. P. 2335–2344.
doi:10.1016/j.enconman.2005.01.001

  3. Ehinola, O. A., Sonibare, O. O., Akanbi, O. A. Economic evaluation, recovery techniques, and environmental implications of the oil shale deposits in the Abakaliki anticlinorium, Southeastern Nigeria // Oil Shale. 2005. Vol. 22, No. 1. P. 5–19

  4. Ehinola, O. A. Depositional Environment and Hydrocarbon Potential of the Oil Shale Deposit from the Abakaliki Fold Belt, Southeastern Nigeria, Ph.D thesis, University of Ibadan, 2002, 240 p.

  5. Ehinola, O. A., Bassey, C. E., Ekweozor, C. M. Preliminary studies of the litho­stratigraphy and depositional environment of the oil shale deposits of Abakaliki anticlinorium, southeastern, Nigeria // Journal of Mining and Geology. 2003. Vol. 39, No. 2. P. 85–94.

  6. Lobthenbach, B., Winnefeld, F. Thermodynamic modeling of the hydration of Portland cement // Cement Concr. Res. 2006. Vol. 36, No. 2. P. 209–226.
doi:10.1016/j.cemconres.2005.03.001

  7. Al-Otoom, A. Y. A thermodynamic study on the utilization of Jordanian oil shale in the cement industry // Oil Shale. 2005. Vol. 22, No. 1. P. 37–49.

  8. Ojoh, K. A. Cretaceous geodynamic evolution of the southern part of of the Benue trough (Nigeria) in the equatorial domain of the South Atlantic. Strati­graphy, basin analysis and paleo-oceanography // Bulletin des Centres de Recharches Exploration-Production Elf-Aquitaine. 1990. Vol. 14, No. 2. P. 419–442.

  9. Reyment, R. A. Aspects of the Geology of Nigeria. – Ibadan, Nigeria: Ibadan Univ. Press, 1965. 145 p.

10. Benkhelil, J. The origin and evolution of the Cretaceous Benue trough (Nigeria) // J. Afric. Earth Sci. 1989. Vol. 8, No. 2–4. P. 251–282.
doi:10.1016/S0899-5362(89)80028-4

11. Akande, S. O., Erdtmann, B. D. Burial metamorphism (thermal maturation) in Cretaceous sediments of the southern Benue Trough and Anambra basin, Nigeria // Am. Assoc. Petrol. Geol. Bull. 1998. Vol. 82, No. 6. P. 1191–1206.

12. Amajor, L. C. The Cenomanian hiatus in the Southern Benue Trough, Nigeria // Geological Magazine. 1985. Vol. 122, No. 1. P. 39–50.

13. Eriksson, G., Wu, P., Pelton, A. D. Critical evaluation and optimization of the thermodynamic properties and phase diagrams of the MgO–Al2O3, MnO–Al2O3, FeO–Al2O3, Na2O–Al2O3 and K2O–Al2O3 // Calphad. 1993. Vol. 17, No. 2. P. 189–205.

14. Besmann, T. M., Spear, K. E. Thermodynamical modeling of oxide glasses // J. Am. Ceram. Soc. 2002. Vol. 85, No. 12. P. 2887–2894.

15. Pelton, A. D., Wu, P. Thermodynamic modeling in glass-forming melts // J. Non-Cryst., Solids. 1999, Vol. 253, No. 1. P. 178–191.
doi:10.1016/S0022-3093(99)00352-X

16. Eriksson, G., Hack, K. SGTE Pure Substance Database, 1996 Version, produced by the Scientific Group Thermodata Europe, and obtained through GTT Technologies. – Germany: Herzogonrah, 1996.

17. Lee, Y. E. Thermodynamics of CaO-SiO2 system // Calphad. 1982. Vol. 6, No. 4. P. 283–291.

18. Chatterjee, N. D. Applied Mineralogical Thermodynamics: Selected Topics. – Springer-Verlag, 1991. P. 33–164.

19. Bale, C. W., Eriksson, G. Metallurgical thermodynamical databases: A review // Canad. Metall. Quarterly. 1990. Vol. 29, No. 2. P. 105–132.

20. Saunders, N., Miodownik, A. P. Calphad (Calculation of Phase Diagrams), A Comprehensive Guide: Pergamon Materials series. – Elsevier Science Ltd, 1998. P. 30–408.

21. Smith, B. E. Basic Chemical Thermodynamics, fifth edition. – London: Imperial College Press, 2004. P. 104–240.

22. Jak, E., Degterov, S. A., Pelton, A. D., Happ, J., Hayes, P.C. Thermodynamic modeling of the system Al2O3-SiO2-CaO-FeO-Fe2O3 to characterise coal ash slags // Impact of Mineral Impurities in Solid Fuel Combustion / R. P. Gupta, T. F. Wall, L. Baxter (Eds.). NY: Kluwer Academic Plenum Publ., 1999. P. 723–733.
Back to Issue