ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
Research article
The depositional settings of organic-rich shale in the faulted lacustrine basin: A case study of the Y1 Member of the Yingcheng Formation in the Songliao Basin; pp. 49–70
PDF | https://doi.org/10.3176/oil.2024.1.03

Authors
Haoxiang Lan, Min Guo, Meiyan Fu, Jon Gluyas, Hengwei Guo, Danlong Li, Can Ling, Guanghui Duan, Fengcun Xing
Abstract

Volcanic activity is often associated with the development of faulted lacustrine basins. Organic-rich shale in such basins usually contains abundant volcanic material. The influence of volcanic input on organic-rich shale deposition in the basin studied has not been discussed in detail. Based on the ten shale samples from three wells, this study analyzed the depositional environment of the Yingcheng Formation shale in the Lishu Fault Depression area of the Songliao Basin by using interpretation of logging, total organic carbon analysis, gas chromatography mass spectrometry analysis, and trace element analysis. The impact of fault break to basement and volcanic materials on the organic matter enrichment was evaluated. The results show that the organic matter of Ying 1 (Y1), the First Member of the Yingcheng Formation, in the Lishu Fault Depression is characterized mainly by type I kerogen. The shale of the Y1 Member, having high total organic carbon content, is laterally continuous and could be considered as a potential target for shale oil exploration. The shale with high total organic carbon was deposited in a freshwater deep lake under an anoxic environment. There is a significant input of volcanic material, especially around the Su2 well near the Sangshutai Fault. This study has established a sedimentary model of organic-rich shale in the faulted lacustrine basin affected by volcanic activity, which has significance for the exploration of shale oil in faulted lacustrine basins. 

References

1. Horsfield, B., Curry, D. J., Bohacs, K., Littke, R., Rullkötter, J., Schenk, H. J., Radke, M., Schaefer, R. G., Carroll, A. R., Isaksen, G., Witte, E. G. Organic geochemistry of freshwater and alkaline lacustrine sediments in the Green River Formation of the Washakie Basin, Wyoming, U.S.A. Org. Geochem., 1994, 22(3–5), 415–440. 
https://doi.org/10.1016/0146-6380(94)90117-1

2. Dong, D. Z., Zou, C. N., Yang, H., Wang, Y. M., Li, X. J., Cheng, G. S., Wang, S. Q., Lu, Z. G., Huang, Y. B. Progress and prospects of shale gas exploration and development in China. Acta Pet. Sin., 2012, 33, 107–114. 
https://doi.org/10.7623/syxb2012S1013

3. Han, W. Z., Zhao, X. Z., Jin, F. M., Pu, X. G., Chen, S. Y., Mou, L. G., Zhang, W., Shi, Z. N., Wang, H. Sweet spots evaluation and exploration of lacustrine shale oil of the second member of Paleogene Kongdian Formation in Cangdong Sag, Bohai Bay Basin. Pet. Explor. Dev., 2021, 48(004), 777–786. 
https://doi.org/10.11698/PED.2021.04.10

4. Su, A., Chen, H. H., Feng, Y. X., Zhao, J. X., Nguyen, A. D. Multistage fracturing history in the Paleocene lacustrine shale oil reservoirs of the Subei Basin, Eastern China. Mar. Pet. Geol., 2022, 144, 105385. 
https://doi.org/10.1016/j.marpetgeo.2022.105835

5. Wang, X., Wang, M., Li, J. B., Shao, H. M., Deng, Z. X., Wu, Y. Thermal maturity: The controlling factor of wettability, pore structure, and oil content in the lacustrine Qingshankou shale, Songliao Basin. J. Pet. Sci. Eng., 2022, 215(PA), 110618. 
https://doi.org/10.1016/j.petrol.2022.110618

6. Surdam, R. C., Stanley, K. O. Effects of changes in drainage-basin boundaries on sedimentation in Eocene Lakes Gosiute and Uinta of Wyoming, Utah, and Colorado. Geology, 1980, 8(3), 135–139. 
https://doi.org/10.1130/0091-7613(1980)8<135:EOCIDB>2.0.CO;2

7. Leggitt, V. L., Biaggi, R. E., Buchheim, H. P. Palaeoenvironments associated with caddisfly-dominated microbial-carbonate mounds from the Tipton Shale Member of the Green River Formation: Eocene Lake Gosiute. Sedimentology, 2007, 54(3), 661–699. 
https://doi.org/10.1111/j.1365-3091.2007.00854.x

8. Lei, W. Z., Chen, D. X., Liu, Z. Y., Cheng, M. Paleoenvironment-driven organic matter accumulation in lacustrine shale mixed with shell bioclasts: A case study from the Jurassic Da’anzhai member, Sichuan Basin (China). J. Pet. Sci. Eng., 2023, 220(PA), 111178. 
https://doi.org/10.1016/j.petrol.2022.111178

9. Cheng, P., Xiao, X. M., Fan, Q. Z., Gao, P. Oil retention and its main controlling factors in lacustrine shales from the Dongying Sag, Bohai Bay Basin, Eastern China. Energies, 2022, 15(12), 4270. 
https://doi.org/10.3390/en15124270

10. Ma, P. J., Dong, C. M., Lin, C. Y. Petrographic and geochemical characteristics of nodular carbonate-bearing fluorapatite in the lacustrine shale of the Shahejie Formation, Dongying Depression, Bohai Bay Basin. Sediment. Geol., 2022, 439, 106218. 
https://doi.org/10.1016/j.sedgeo.2022.106218

11. Pang, P., Han, H., Tan, X. C., Ren, S. M., Guo, C., Xie, L., Zheng, L. L., Zhu, H. H., Gao, Y., Xie, Y. H. Organic matter pores in the chang 7 lacustrine shales from the Ordos Basin and its effect on reflectance measurement. Pet. Sci., 2022, 20(1), 60–86. 
https://doi.org/10.1016/j.petsci.2022.08.031

12. Zhang, W., Jin, Z. J., Liu, Q. Y., Shan, X. C., Li, P., Liang, X. P. The C–S–Fe system evolution reveals organic matter preservation in lacustrine shales of Yanchang Formation, Ordos Basin, China. Mar. Pet. Geol., 2022, 142, 105734. 
https://doi.org/10.1016/j.marpetgeo.2022.105734

13. Liu, H. L., Zou, C. N., Qiu, Z., Pan, S. Q., Zhang, W. Z., Jing, Z. H., Hao, J. H., Yin, S., Wu, S. T., Li, S. X., Guo, Q. L. Sedimentary enrichment factors of extraordinarily high organic matter in the sub-member 3 of Member 7 of Yanchang Formation, Ordos Basin. Acta Pet. Sin., 2022, 43(11), 1520–1541. 

14. Zhang, S. C., Zhang, B. M., Bian, L. Z., Jin, Z. J., Wang, D. R., Zhang, X. Y., Gao, Z. Y., Chen, J. F. Development constraints of marine source rocks in China. Earth Sci. Front., 2005, 12(03), 39–48. 

15. Li, D. L., Fu, M. Y., Huang, Y., Wu, D., Xue, R. The characteristics and main controlling factors for the formation of micropores in shale from the Niutitang Formation, Wenshuicun Section, Southwest China. Energies, 2021, 14(23), 7858. 
https://doi.org/10.3390/en14237858

16. Qiu, Z., Liu, B., Dong, D. Z., Lu, B., Yawar, Z., Chen, Z. H., Schieber, J. Silica diagenesis in the Lower Paleozoic Wufeng and Longmaxi formations in the Sichuan Basin, South China: Implications for reservoir properties and paleoproductivity. Mar. Pet. Geol., 2020, 121, 104594. 
https://doi.org/10.1016/j.marpetgeo.2020.104594

17. Imbus, S. W., Macko, S. A., Elmore, R. D., Engel, M. H. Stable isotope (C, S, N) and molecular studies on the Precambrian Nonesuch Shale: Evidence for differential preservation rates, depositional environment and hydrothermal influence. Chem. Geol., 1992, 101(3–4), 255–281. 

https://doi.org/10.1016/0009-2541(92)90007-R

18. Doner, Z., Kumral, M., Demirel, I. H., Hu, Q. H. Geochemical characteristics of the Silurian shales from the central Taurides, southern Turkey: Organic matter accumulation, preservation and depositional environment modeling. Mar. Pet. Geol., 2019, 102, 155–175. 
https://doi.org/10.1016/j.marpetgeo.2018.12.042

19. Deng, M. Z., Fang, C. M., Deng, P., Zhang, Y., Zhu, J. F. Origin of strike-slip thrust structure in Lishu area, southern Songliao Basin: a case study of Xiaokuan fault belt. Acta Pet. Sin., 2020, 41(09), 1089–1099. 
https://doi.org/10.7623/syxb202009005

20. Meng, F. C., Liu, J. Q., Cui, Y., Gao, J. L., Liu, X., Tong, Y. Mesozoic tectonic regimes transition in the Northeast China: Constriants from temporal-spatial distribution and associations of volcanic rocks. Acta Petrol. Sin., 2014, 30(12), 3569–3586. 

21. Yang, X. B., Wang, H. Y., Li, Z. Y., Guan, C., Wang, X. Tectonic-sedimentary evolution of a continental rift basin: A case study of the Early Cretaceous Changling and Lishu fault depressions, southern Songliao Basin, China. Mar. Pet. Geol., 2021, 128, 105068. 
https://doi.org/10.1016/j.marpetgeo.2021.105068

22. Zhang, M., Li, H. B., Wang, X. Geochemical characteristics and grouping of the crude oils in the Lishu fault depression, Songliao basin, NE China. J. Pet. Sci. Eng., 2013, 110, 32–39. 
https://doi.org/10.1016/j.petrol.2013.08.013

23. Tang, Y., Yang, R. Z., Zhu, J. F., Yin, S., Fan, T. L., Dong, L. F., Hou, Y. C. Analysis of continental shale gas accumulation conditions in a rifted basin: A case study of Lower Cretaceous shale in the southern Songliao Basin, northeastern China. Mar. Pet. Geol., 2018, 101, 389–409. 
https://doi.org/10.1016/j.marpetgeo.2018.12.002

24. Wang, H. Y., Fan, T. L., Li, R. L., Hou, Y. C., Fan, X. S., Zhang, B. Search for hydrocarbon traps in syncline structures: A case study from the Lishu Depression of Songliao Basin, China. J. Pet. Sci. Eng., 2017, 159, 76–91. 
https://doi.org/10.1016/j.petrol.2017.09.016

25. Feng, Z. Q., Jia, C. Z., Xie, X. N., Zhang, S., Feng, Z. H., Cross, T. A. Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao basin, northeast China. Basin Res., 2010, 22(01), 79–95. 
https://doi.org/10.1111/j.1365-2117.2009.00445.x

26. Ge, R. F., Zhang, Q. L., Wang, L. S., Xie, G. A., Xu, S. Y., Chen, J., Wang, X. Y. Tectonic evolution of Songliao basin and the prominent tectonic regime transition in eastern China. Geol. Rev., 2010, 56(02), 180–195. 
https://doi.org/10.16509/j.georeview.2010.02.005

27. Wang, R., Shi, W. Z., Xie, X. Y., Tang, D. Q., Manger, W., Busbey, A. B., Xu, L. T. Boundary fault linkage and its effect on Upper Jurassic to Lower Cretaceous sedimentation in the Gudian half-graben, Songliao Basin, northeastern China. Mar. Pet. Geol., 2018, 98, 33–49. 
https://doi.org/10.1016/j.marpetgeo.2018.08.007

28. Huang, D. F., Li, J. C., Zhang, D. J. Kerogen types and study on effectiveness, limitation and interrelation of their identification parameters.Acta Sedimentol. Sin., 1984, 2(03), 18–33. 

29. Chen, J. P., Chen, J. J., Zhang, L. P., Zhong, N. N., Wang, Z. Y. New opinions on oil and gas generation and exploration in Jiuxi basin (I) – Basic petroleum and geological condition and oil-generating potential. Pet. Explor. Dev., 2001, 28(01), 19–22. 
https://doi.org/10.3321/j.issn:1000-0747.2001.01.007

30. Xiong, D. M., Ma, W. Y., Zhang, M. F., Wu, C. J., Tuo, J. C. New method for the determination of kerogen type and the hydrocarbon potential. Nat. Gas. Geosci., 2014, 25(06), 898–905. 

31. Wang, J., Chen, J. F., Dou, Q. L. Evaluation of the hydrocarbon-generating potential for the possible hydrocarbon source rocks of the middle-upper Proterozoic in north Huabei area. Pet. Geol. Exp., 2004, 26, 206–211. 
https://doi.org/10.3969/j.issn.1001-6112.2004.02.014

32. Didyk, B. M., Simoneit, B. R. T., Brassell, S. C., Eglinton, G. Organic geo-chemical indicators of palaeoenvironmental conditions of sedimentation. Nature, 1978, 272(5650), 216–222. 
https://doi.org/10.1038/272216a0

33. Peters, K. E., Walters, C. C., Moldowan, J. M. The Biomarker Guide: Biomarkers and Isotopes in Petroleum Exploration and Earth History. The Press Syndicate of the University of Cambridge, 2005.

34. Hong, Z. H., Li, H. X., Rullkötter, J., Mackenzie, A. S. Geochemical application of sterane and triterpane biological marker compounds in the Linyi Basin. Org. Geochem., 1986, 10(1–3), 433–439. 
https://doi.org/10.1016/0146-6380(86)90043-4

35. Zheng, R. C., Liu, M. Q. Study on palaeosalinity of chang-6 oil reservoir set in Ordos basin. Oil Gas Geol., 1999, 20(01), 20–25. 
https://doi.org/10.11743/ogg19990105

36. Wei, W., Algeo, T. J. Elemental proxies for paleosalinity analysis of ancient shales and mudrocks. Geochim. Cosmochim. Acta, 2020, 287, 341–366. 
https://doi.org/10.1016/j.gca.2019.06.034

37. Algeo, T. J., Liu, J. S. A re-assessment of elemental proxies for paleoredox analysis. Chem. Geol., 2020, 540, 119549. 
https://doi.org/10.1016/j.chemgeo.2020.119549

38. Dill, H. Metallogenesis of early Paleozoic graptolite shales from the Graefenthal Horst (northern Bavaria-Federal Republic of Germany). Econ. Geol., 1986, 81(4), 889–903. 
https://doi.org/10.2113/gsecongeo.81.4.889

39. Dill, H., Teschner, M., Wehner, H. Petrography, inorganic and organic geochemistry of Lower Permian carbonaceous fan sequences (“Brandschiefer Series”) – Federal Republic of Germany: Constraints to their paleogeography and assessment of their source rock potential. Chem. Geol., 1988, 67(3–4), 307–325. 
https://doi.org/10.1016/0009-2541(88)90136-2

40. Jones, B., Manning, D. A. C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem. Geol., 1994, 111(1–4), 111–129. 
https://doi.org/10.1016/0009-2541(94)90085-X

41. Xu, Z. J., Wang, Y., Jiang, S., Fang, C., Liu, L. F., Wu, K. J., Luo, Q., Li, X., Chen, Y. Y. Impact of input, preservation and dilution on organic matter enrichment in lacustrine rift basin: A case study of lacustrine shale in Dehui Depression of Songliao Basin, NE China. Mar. Pet. Geol., 2022, 135, 105386. 
https://doi.org/10.1016/j.marpetgeo.2021.105386

42. Li, Y. H., Xu, X. Y., Zhang, J. F., Chen, S., Bai, J., Liu, W. B., Wang, Q. Y. Hybrid sedimentary conditions of organic-rich shales in faulted lacustrine basin during volcanic eruption episode: A case study of Shahezi Formation K1sh Fm., Lishu Faulted Depression, South Songliao Basin. Earth Sci., 2022, 47(05), 1728–1747. 
https://doi.org/10.3799/dqkx.2022.015

43. Zhang, J. F., Xu, X. Y., Bai, J., Chen, S., Liu, W. B., Li, Y. H. Accumulation and exploration of continental shale gas resources of Cretaceous Shahezi Formation in Lishu fault depression, Songliao Basin, NE China. Pet. Explor. Dev., 2022, 49(3), 440–452. 
https://doi.org/10.11698/PED.20210755

44. Shi, X. M., Wei, Y. S., Zhu, H. Q., Wang, C. H., Huang, S. Q., Cheng, M. H. Pore structure characteristics and reservoir classification and evaluation of tight tuffaceous sandstone gas reservoir: Taking the tight tuffaceous sandstone of Yingcheng Formation in southern Songliao Basin as an example. Nat. Gas Geosci., 2023, 34(10), 1828–1841.

45. Huang, W., Shao, H. M., Zhao, H. L., Li, H. J. Characteristics of Yingcheng Formation’s volcanic reservoir in Xushen Gas Field in northern Songliao Basin. Acta Pet. Sin., 2006, 27(A1), 47–51. 
https://doi.org/10.3321/j.issn:0253-2697.2006.z1.009

46. Luo, J. L., Lin, T., Yang, Z. S., Liu, X. H., Zhang, J., Liu, S. Y. Lithofacies and reservoir quality control factors of volcanics in the Yingcheng Formation in the Shengping gas field in the Songliao Basin. Oil Gas Geol., 2008, 29(06), 748–757. 
https://doi.org/10.3321/j.issn:0253-9985.2008.06.007

47. Achterberg, E. P., Steigenberger, S., Klar, J. K., Browning, T. J., Marsay, C. M., Painter, S. C., Vieira, L. H., Baker, A. R., Hamilton, D. S., Tanhua, T., Moore, C. M. Trace element biogeochemistry in the high-latitude North Atlantic Ocean: Seasonal variations and volcanic inputs. Global Biogeochem. Cycles, 2021, 35(3).
https://doi.org/10.1029/2020GB006674

48. Powell, T. G., McKirdy, D. M. Relationship between ratio of pristane to phytane, crude oil composition and geological environment in Australia. Nature Phys. Sci., 1973, 243(124), 37–39. 
https://doi.org/10.1038/physci243037a0

49. Mei, B. W., Liu, X. J. The distribution of isoprenoid alkanes in China’s crude oil and its relation with the geologic environment. Oil Gas Geol., 1980, 1(02), 99–115. 
https://doi.org/10.11743/ogg19800203

50. Fu, J. M., Sheng, G. Y., Xu, J. Y., Jia, R. F., Fan, S. F., Peng, P. A., Eglinton, G., Gowar, A. P. Application of biomarker compounds in assessment of paleoenvironments of Chinese terrestrial sediments. Acta Geochim., 1991, 01, 1–12. 
https://doi.org/10.19700/j.0379-1726.1991.01.001

51. Sweere, T., Boorn, S. van den, Dickson, A. J., Reichart, G.-J. Definition of new trace-metal proxies for the controls on organic matter enrichment in marine sediments based on Mn, Co, Mo and Cd concentrations. Chem. Geol., 2016, 441, 235–245. 
https://doi.org/10.1016/j.chemgeo.2016.08.028

Back to Issue