ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
Research article
A review on oil shale in-situ mining technologies: Opportunities and challenges; pp. 1–25
PDF | https://doi.org/10.3176/oil.2024.1.01

Authors
Bo Chen, Jiatie Cai, Xinran Chen, Di Wu, Yi Pan
Abstract

The principle and application of oil shale in-situ mining technology are reviewed. Oil shale is rich in resources and is an important supplement to petroleum and natural gas as a source of energy. Currently, ground retorting technology is the primary way to produce shale oil because of its elaborated processing method and equipment. However, this technology has several disadvantages such as low thermal efficiency, high environmental pollution and inability to exploit deeply buried oil shale. A novel method called oil shale in-situ mining technology is efficient and environmentally friendly. This technology can exploit deep oil shale while reducing pollution and greenhouse effect. Based on the data collected, this paper summarizes the development of global underground in-situ oil shale mining technology, introduces four heating transfer principles and mathematical models of conduction heating, convection heating, radiation heating and combustion heating, clarifies the process flow, as well as presents advantages and disadvantages of different technologies. It provides a reference for the research of oil shale in-situ mining technology, and also looks into the technology’s prospects for industrialization, integrating with greenization, information and intelligence.

References

1. Fang, Y., Zhang, W., Ma, F., Cheng, L., Shi, F. Research on the global distribution and development status of shale oil. Conservation and Utilization of Mineral Resources, 2019, 39(5), 126–134 (in Chinese). 
https://doi.org/10.13779/j.cnki.issn1001-0076.2019.05.013

2. Liu, Z., Meng, Q., Liu, R. Research status and development trend of oil shale. The Fourth National Congress of Sedimentology, October 16–20, 2009, Qingdao, China (in Chinese).

3. Qian, J., Wang, J. Recent development of oil shale in the world – Two Inter-national Oil shale Conferences in 2006. Sino Foreign Energy, 2007, 12(1), 7–11 (in Chinese).

4. Wang, H., Li, G., Liu, X., Song, X., Zheng, Y., Liu, M., Ma, Y. Current situation and development trend of oil shale development and research. China Basic Science, 2020, (5), 8 (in Chinese). 
https://doi.org/10.3969/j.issn.1009-2412.2020.05.001

5. Petroleum Institute of China, University of Petroleum. Petroleum Technology Dictionary. Petroleum Industry Press, Beijing, 1996 (in Chinese).

6. Bejan, A. Advanced Engineering Thermodynamics. John Wiley & Sons, 2016.
https://doi.org/10.1002/9781119245964

7. Hou, H., Du, Q., Huang, C., Zhang, L., Hu, E. An oil shale recovery system powered by solar thermal energy. Energy, 2021, 225, 120096. 
https://doi.org/10.1016/j.energy.2021.120096

8. Prien, C. H. Current status of U.S. oil shale technology. Ind. Eng. Chem., 1964, 56(9), 32–40.
https://doi.org/10.1021/ie50657a005

9. Kang, Z., Zhao, Y., Yang, D. Review of oil shale in-situ conversion technology. Applied Energy, 2020, 269
https://doi.org/10.1016/j.apenergy.2020.115121

10. Shell Frontier Oil and Gas Inc. E-ICP Project Plan of Operation – Oil Shale Research and Development Project. Bureau of Land Management, Houston, U.S., 2006.

11. Liu, S., Wang, S., Chen, C., Zhong, Y., Zheng, Y. Shale oil production technology and progress of Shell. Journal of Daqing Petroleum Institute, 2007, (3), 53–55 (in Chinese). 
https://doi.org/10.3969/j.issn.2095-4107.2007.03.016

12. Fang, C., Zheng, D., Ge, Z. Field test of Shell ICP technology. Science and Technology Innovation Guide, 2010, (36), 110–111 (in Chinese). 
https://doi.org/10.3969/j.issn.1674-098X.2010.36.088

13. Dammer, A. R, Killen, J. C., Biglarbigi, K. Secure Fuels from Domestic Resources: The Continuing Evolution of America’s Oil Shale and Tar Sands Industries. Report of U.S. Department of Energy, 2007, 1–68.

14. Biglarbigi, K., Dammer, A., Mohan, H., Carolus, M. Economics of Oil Shale Development in the United States. Paper presented at the SPE Annual Technical Conference and Exhibition, Denver, Colorado, USA, September 2008, SPE-116560-MS.
https://doi.org/10.2118/116560-MS

15. Sun, Y., Guo, W., Deng, S. Current situation and development trend of underground in-situ transformation and drilling and production technology of oil shale. Drilling Engineering, 2021, 48(1), 57–67 (in Chinese). 

16. Wang, Y., Wang, Y., Meng, X., Su, J., Li, F., Li, Z. US oil shale in-situ mining technology and enlightenment. Petroleum Drilling and Production Technology, 2013, 35(6), 55–59 (in Chinese). 
https://doi.org/10.13639/j.odpt.2013.06.032

17. Sun, Y., Deng, S., Wang, H. Progress of international oil shale development technology and research in the 33rd International Oil Shale Conference. Advances in the exploitation technologies and researches of oil shale in the World Report on 33rd Oil Shale Symposium in US. Journal of Jilin University (Earth Science Edition), 2015, 45(4), 1052–1059 (in Chinese). 
https://doi.org/10.13278/j.cnki.jjuese.201504109

18. Allix, P, Bumham, A., Fowler, T., Herron, M., Kleinberg, R., Symington, B. Coaxing oil from shale. Oilfield Review, 2010, 22(4), 4–15.

19. Wang, Y., Wang, Y., Meng, X., Su, J., Long, Q., Gao, Y. New idea of in-situ oil shale production by fluid heating. Petroleum Drilling and Production Technology, 2014, 36(4), 71–74 (in Chinese). 
https://doi.org/10.13639/j.odpt.2014.04.018

20. Zhao, Y. S., Yang, D., Guan, K. W., Liu, S. Y., Liang, W. G., Feng, Z. C., Kang, Z. Q. A Method to Get Oil and Gas from Oil Shale by High Temperature Hydrocarbon Gas. CN 101122226, 2008‒2‒13 (in Chinese).

21. Yang, Q., Guo, W., Li, Q., Wang, Z., Sun, Y., Deng, S. A Downhole Ignition Heating Device for Oil Shale in-Situ Mining. CN 2019201869756, 2019 (in Chinese).

22. Zhang, T. Schlumberger acquired new technologies for RF/CF shale mining. Foreign Oil Field Engineering, 2009, 25(1), 46 (in Chinese).

23. Crawford, P. M., Biglarbigi, K., Dammer, A. R., Knaus, E. Advances in world oil shale production technologies. In: SPE Annual Technical Conference and Exhibition (ATCE 2008), September 21–24, 2008, 24. Denver, Colorado, USA, vol. 6, SPE 116570, 4001–4111.

24. Burwell, E. L., Sterner, T. E., Carpenter, H. C. In situ retorting of oil shale – results of two field experiments. Rep. Invest. – U.S., Bur. Mines(United States), 7783, 1973.

25. United States. Congress. Office of Technology Assessment Congress. An Assessment of Oil Shale Technologies, 1980, 1–31.

26. Lee, S., Speight, J. G., Loyalka, S. K. Handbook of Alternative Fuel Technologies. CRC Press, Boca Raton, 2014.
https://doi.org/10.1201/b17157

27. Bai, F. Theoretical and Laboratory Experimental Study on Partial Chemical Pyrolysis of Oil Shale. PhD thesis. Jilin University, 2015 (in Chinese).

28. Zhang, C., Meng, Q., Tang, X. Current situation and prospect of oil shale mining technology. Mineral Exploration, 2021 (in Chinese). 
https://doi.org/10.3969/j.issn.1674-7801.2021.08.012

29. Xia, T. Study on Numerical Simulation of in-Situ Electric Heating Production of Oil Shale Reservoirs. PhD thesis. China University of Petroleum (East China), 2023 (in Chinese) 

30. Ma, Z., Zheng, L., Zhao, Z. Influence and its revelation of oil shale in-situ mining simulation in different boundary conditions. Journal of Jilin University (Earth Science Edition), 2017, 47(2), 431–441 (in Chinese). 
https://doi.org/10.13278/j.cnki.jjuese.201702109

31. Gao, C., Su, J., Wang, Y., Meng, X., Wang, Y., Zhang, L. Research progress in numerical simulation of oil shale in-situ mining. Petroleum Drilling and Production Technology, 2018, 40(3), 330–335 (in Chinese). 
https://doi.org/10.13639/j.odpt.2018.03.010

32. Zhao, W., Hu, S., Hou, L. Connotation and strategic role of in-situ conversion processing of shale oil underground in the onshore China. Petroleum Exploration and Development, 2018, 45(4), 537–545 (in Chinese). 
https://doi.org/10.1016/S1876-3804(18)30063-6

33. Ma, F., Wang, L., Liu, Q., Wu, Q., Bao, X., Zeng, P. Preliminary study on an in-situ oil shale mining method – taking Maoming oil shale as an example. Journal of Guangdong Institute of Petrochemical Engineering, 2019, 29(6), 5–9 (in Chinese). 
https://doi.org/10.3969/j.issn.2095-2562.2019.06.002

34. Fang, Z., Sui, X., Jiang, S., Liang, X. Experimental study on the influence of water content on the formation process of freezing wall in oil shale in-situ mining. Chemical Management, 2019, (17), 30–31 (in Chinese). 
https://doi.org/10.3969/j.issn.1008-4800.2019.17.017

35. Wang, Y., Xue, L., Sun, X. The influence of relative position and occurrence of fractures and well groups on heating effect in oil shale in-situ mining. Science, Technology and Engineering, 2019, 19(35), 141–147 (in Chinese). 
https://doi.org/10.3969/j.issn.1671-1815.2019.35.020

36. Ma, Z., Wang, Q., Zheng, L., Zhang, C. Identification method and application of temperature time conversion rate of oil shale in-situ mining. Journal of Jilin University (Earth Science Edition), 2019, 49(2), 394–399 (in Chinese). 
https://doi.org/10.13278/j.cnki.jjuese.20170199

37. Kaviany, M., Kanury, A. M. Principles of heat transfer. Appl. Mech. Rev., 2002, 55(5), B100–B102. 
https://doi.org/10.1115/1.1497490

38. Cheng, P., Hsu, C. T. Heat conduction. In: Transport Phenomena in Porous Media (Ingham, D. B., Pop, I., eds.). Pergamon Press, Elsevier Science, Oxford, 1998, 57–76.
https://doi.org/10.1016/B978-008042843-7/50003-9

39. Pan, Y., Zhang, J., Wang, X., Yang, S. Research on electric heating technology in-situ oil shale mining. IOSR Journal of Engineering (IOSRJEN), 2012, 2(8), 39–44. 
https://doi.org/10.9790/3021-02843944

40. Zhao, Y., Dong, Y., Feng, Z., Liang, W., Kang, Z. Multi-field coupling theory of porous media and its application in resource and energy engineering. Chin. J. Rock Mech. Eng., 2008, 27(7), 1321–1328 (in Chinese).
https://doi.org/10.3321/j.issn:1000-6915.2008.07.004

41. Kaviany, M. Principles of Convective Heat Ttransfer. Mechanical Engineering Series, Springer, New York, 2013.

42. Lappa, M. Thermal Convection: Patterns, Evolution and Stability. John Wiley & Sons, 2009.
https://doi.org/10.1002/9780470749982

43. Wang, L., Zhao, Y., Yang, D., Kang, Z., Zhao, J. Effect of pyrolysis on oil shale using superheated steam: A case study on the Fushun oil shale, China. Fuel, 2019, 253, 1490–1498. 
https://doi.org/10.1016/j.fuel.2019.05.134

44. Wang, L., Yang, D., Kang, Z. Evolution of permeability and mesostructure of oil shale exposed to high-temperature water vapor. Fuel, 2021, 290, 119786.
https://doi.org/10.1016/j.fuel.2020.119786

45. Zhao, Y. S., Feng, Z. C., Yang, D., Liu, S. Y., Sun, K. M., Zhao, J. Z., Guan, K. W., Duan, K. L. The method for mining oil & gas from oil shale by convection heating. China Invent Patent, CN200510012473. April 20, 2005 (in Chinese).

46. Wang, G., Liu, S., Yang, D., Fu, M. Numerical study on the in-situ pyrolysis process of steeply dipping oil shale deposits by injecting superheated water steam: A case study on Jimsar oil shale in Xinjiang, China, Energy, 2022, 239, Part C, 122182. 
https://doi.org/10.1016/j.energy.2021.122182

47. Huang, X., Kang, Z., Zhao, J., Wang, G., Zhang, H., Yang, D. Experimental investigation on micro-fracture evolution and fracture permeability of oil shale heated by water vapor. Energy, 2023, 277, 127677. 
https://doi.org/10.1016/j.energy.2023.127677

48. Kang, Z., Zhao, Y., Yang, D., Tian, L., Li, X. A pilot investigation of pyrolysis from oil and gas extraction from oil shale by in-situ superheated steam injection. J. Petrol. Sci. Eng., 2020, 186, 106785. 
https://doi.org/10.1016/j.petrol.2019.106785

49. Boak, J. Oil Shale: Is Now the Time? Garfield County Energy Advisory Board, December 1, 2011, 1–68. Colorado, 2011.

50. Crawford, P. M., Killen, J. C. New challenges and directions in oil shale development technologies. Oil shale: A solution to the liquid fuel dilemma. ACS Symposium Series, 2010, 1032, 21–60. 
https://doi.org/10.1021/bk-2010-1032.ch002

51. Yang, D., Xue, J., Kang, Z., Liu, Z. Experimental study on distillation and permeability of Fushun oil shale. Journal of Xi’an Petroleum University (Natural Science Edition), 2007, 22(2), 23–25 (in Chinese). 
https://doi.org/10.3969/j.issn.1673-064X.2007.02.006

52. Liu, Z., Yang, D., Xue, J., Zhao, Y. Experimental study on permeability law of oil shale after retorting. Journal of Taiyuan University of Technology, 2006, 37(4), 414–416 (in Chinese). 
https://doi.org/10.3969/j.issn.1007-9432.2006.04.010

53. Viskanta, R., Mengüc, M. P. Radiation heat transfer in combustion systems. Prog. Energy Combust. Sci., 1987, 13(2), 97–160. 
https://doi.org/10.1016/0360-1285(87)90008-6

54. Howell, J. R., Mengüç, M. P, Daun, K., Siegel, R. Thermal Radiation Heat Transfer. CRC Press, 2020.
https://doi.org/10.1201/9780429327308

55. Zhu, J., Yi, L., Yang, Z., Duan, M. Three-dimensional numerical simulation on the thermal response of oil shale subjected to microwave heating. Chem. Eng. J., 2021, 407, 127197. 
https://doi.org/10.1016/j.cej.2020.127197

56. Noble, R. D., Harris, H. G., Tucker, W. F. Isothermal oil shale pyrolysis. 2. Kinetics of product formation and composition at various pressures. Fuel, 1981, 60(7), 573–576. 
https://doi.org/10.1016/0016-2361(81)90156-3

57. Wang, C. C., Noble, R. D. Composition and kinetics of oil generation from non-isothermal oil shale retorting. Fuel, 1983, 62(5), 529–533. 
https://doi.org/10.1016/0016-2361(83)90221-1

58. Sarathi, P. S. In-Situ Combustion Handbook – Principles and Practices. Final Report. National Petroleum Technology Office, U.S. Department of Energy, Tulsa, Oklahoma, 1999. 
https://doi.org/10.2172/3175

59. Jiang, X. M., Han, X. X., Cui, Z. G. Progress and recent utilization trends in combustion of Chinese oil shale. Prog. Energy Combust. Sci., 2007, 33(6), 552–579. 
https://doi.org/10.1016/j.pecs.2006.06.002

60. Jiang, X. M., Han, X. X., Cui, Z. G. New technology for the comprehensive utilization of Chinese oil shale resources. Energy, 2007, 32(5), 772–777. 
https://doi.org/10.1016/j.energy.2006.05.001

61. Guo, W., Yang, Q., Deng, S., Li, Q., Sun, Y., Su, J., Zhu, C. Experimental study of the autothermic pyrolysis in-situ conversion process (ATS) for oil shale recovery. Energy, 2022, 258, 124878. 
https://doi.org/10.1016/j.energy.2022.124878

62. Han, X., Jiang, X., Yu, L., Cui, Z. Change of pore structure of oil shale particles during combustion. Part 1. Evolution mechanism. Energy & Fuels, 2006, 20(6), 2408–2412. 
https://doi.org/10.1021/ef0603277

63. Han, X., Jiang, X., Cui, Z. Change of pore structure of oil shale particles during combustion. 2. Pore structure of oil-shale ash. Energy & Fuels, 2008, 22(2), 972–975. 
https://doi.org/10.1021/ef700645x

Back to Issue