eesti teaduste
akadeemia kirjastus
SINCE 1984
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
A two-step model for assessing the potential of shale-derived chemicals by oxidation of kukersite; pp. 344–362

Birgit Mets, Margus Lopp, Jaan Mihkel Uustalu, Kati Muldma, Allan Niidu, Kristiina Kaldas

The organic matter in oil shale (kerogen) contains vast potential as its structure is rich in easily convertible and versatile building blocks. Due to the complex structure of kerogen, simplifications are often used in order to obtain any information about the mechanism of its processing. This paper presents an approximate two-stage kinetic model which has been constructed to describe the wet air oxidation (WAO) process of the kerogen of Estonian kukersite oil shale, i.e. an alternative oil shale treatment process. The results obtained highlight the basic mechanisms of oil shale oxidation by molecular oxygen in water into different products. These outcomes add to the already existing knowledge on the structure of kerogen and validate it. The composed two-stage reaction formula outlines a fast reaction period which describes the dissolution of organic material, followed by a slower oxidation of dissolved substances. The attained high dissolution rate of kukersite kerogen illustrates the potential for recovering feedstock chemicals. The rate constants found remained independent of the oxygen-to-carbon ratio and good agreement was observed between calculated kinetic curves and experimental values.


1. Francu, J., Harvie, B., Laenen, B., Siirde, A., Veiderma, M. A Study on the EU Oil Shale Industry – Viewed in the Light of the Estonian Experience. A report by EASAC to the Committee on Industry, Research and Energy of the European Parliament, 2007.

2. Dyni, J. R. Geology and resources of some world oil-shale deposits. Oil Shale, 2003, 20(3), 193–252.

3. Speight, J. G. Oil shale resources. In: Shale Oil Production Processes. Gulf Professional Publishing, WY, USA, 2012, 35–73.

4. Baird, Z. S., Oja, V., Järvik, O. Distribution of hydroxyl groups in kukersite shale oil: Quantitative determination using Fourier transform infrared (FT-IR) spectroscopy. Appl. Spectrosc., 2015, 69(5), 555–562.

5. Järvik, O., Baird, Z. S., Rannaveski, R., Oja, V. Properties of kukersite shale oil. Oil Shale, 2021, 38(4), 265–294.

6. Derenne, S., Largeau, C., Casadevall, E., Sinninghe Damsté, J. S., Tegelaar, E. W., de Leeuw, J. W. Characterization of Estonian Kukersite by spectroscopy and pyrolysis: Evidence for abundant alkyl phenolic moieties in an Ordovician, marine, type II/I kerogen. Org. Geochem., 1990, 16(4–6), 873–888.

7. Fokin, L. F. The structure and products of decomposition of Estonian bituminous rocks. Gorny Zhurnal, 1913, II, 117 (in Russian).

8. Blokker, P., van Bergen, P., Pancost, R., Collinson, M. E., de Leeuw, J. W., Sinninghe Damsté, J. S. The chemical structure of Gloeocapsomorpha prisca microfossils: Implications for their origin. Geochim. Cosmochim. Acta, 2001, 65(6), 885–900.

9. Lille, Ü., Heinmaa, I., Pehk, T. Molecular model of Estonian kukersite kerogen evaluated by 13C MAS NMR spectra. Fuel, 2003, 82(7), 799–804.

10. Burdelnaya, N. S., Bushnev, D. A., Mokeev, M. V. Changes in the composition of bitumen extracts and chemical structure of kerogen during hydrous pyrolysis. Geochem. Int., 2013, 51, 738–750.

11. Aarna, A. J., Lippmaa, E. T. On the structure of the Baltic oil shale kerogen. Transact. Tallinn Polytechnic Institute, Ser. A, 1955, 63, 3–50 (in Russian).

12. Chu, W., Cao, X., Schmidt-Rohr, K., Birdwell, J. E., Mao, J. Investigation into the effect of heteroatom content on kerogen sructure using advanced 13C solid-state nuclear magnetic resonance spectroscopy. Energy Fuels, 2019, 33(2), 645–653.

13. Fomina, A., Pobul, L., Degterjowa, S., Veski, R., Kirret, O., Nikopensius, I., Männik, A., Pärn, A., Poom, A., Murumets, K., Ulanen, J., Tänav, I., Kotov, A. Method for Processing Causticobiolites of the Sapropelite Type with an Oxidizing Agent. German Patent No. 2259502, 1974.

14. Degtereva, Z. A., Fomina, A. S. Production of dibasic acids C4–C10 from oil shale kukersite. Acad. Sci. Est. SSR, 1959, 8(2), 122–136 (in Russian).

15. Veski, R., Veski, S. Aliphatic dicarboxylic acids from oil shale organic matter – historic review. Oil Shale, 2019, 36(1), 76–95.

16. Niidu, A., Grénman, H., Muldma, K., Kaldas, K., Mikli, V., Lopp, M. Behavior of Estonian oil shale in acidic oxidative conditions. Front. Chem. Eng., 2022, 4, 1–10.

17. Proskurjakov, V. A., Soloveichik, Z. V. Oxidation of oil shale by atmospheric oxygen. 2. Oxidation of Gdov shales with continuous air supply. Trudy Vsesoj. N.I. Instituta po Pererabotke i Issl. Topliva, 1961, 10, 81–90 (in Russian).

18. Proskurjakov, V. A., Yakovlev, V. I., Kudrjukov, O. I. Oxidation of oil shale by atmospheric oxygen. 3. Oxidation of common oil shales. Trudy Vsesoj. N.I. Instituta po Pererabotke i Issl. Topliva, 1962, 11, 20–27 (in Russian).

19. Kaldas, K., Preegel, G., Muldma, K., Lopp, M. Wet air oxidation of oil shales: Kerogen dissolution and dicarboxylic acid formation. ACS Omega, 2020, 5(35), 22021–22030.

20. Kaldas, K., Niidu, A., Preegel, G., Uustalu, J. M., Muldma, K., Lopp, M. Aspects of kerogen oxidative dissolution in subcritical water using oxygen from air. Oil Shale, 2021, 38(3), 199–214.

21. He, L., Ma, Y., Yue, C., Li, S. Kinetic modeling of Kukersite oil shale pyrolysis with thermal bitumen as an intermediate. Fuel, 2020, 279, 118371.

22. Astra, H. L., Albert, T., Mozaffari, S., Järvik, O., Yanchilin, A., Kamenev, S., Karagöz, S., Oja, V. Yields and the selected physicochemical properties of thermobitumen as an intermediate product of the pyrolysis of Kukersite oil shale. Oil Shale, 2021, 38(4), 295–316.

23. Kaldas, K., Preegel, G., Muldma, K., Lopp, M. Reactivity of aliphatic dicarboxylic acids in wet air oxidation conditions. Ind. Eng. Chem. Res., 2019 58(25), 10855–10863.

24. Kaldas, K. Wet Air Oxidation of Oil Shale. Ph.D. Thesis. Tallinn University of Technology, 2021.

25. Lente, G. Analytical solutions for the rate equations of irreversible two-step consecutive processes with mixed second order later steps. J. Math. Chem., 2017, 55, 832–848.

26. Pray, H. A., Schweickert, C. E., Minnich, B. H. Solubility of hydrogen, oxygen, nitrogen, and helium in water at elevated temperatures. Ind. Eng. Chem., 1952, 44(5), 1146–1151.

27. Geng, M., Duan, Z. Prediction of oxygen solubility in pure water and brines up to high temperatures and pressures. Geochim. Cosmochim. Acta, 2010, 74(19), 5631–5640.

28. Joglekar, H. S., Samant, S. D., Joshi, J. B. Kinetics of wet air oxidation of phenol and substituted phenols. Water Res., 1991, 25(2), 135–145.

29. Debellefontaine, H., Crispel, S., Reilhac, P., Périé, F., Foussard, J.-N. Wet air oxidation (WAO) for the treatment of industrial wastewater and domestic sludge. Design of bubble column reactors. Chem. Eng. Sci., 1999, 54(21), 4953–4959.

30. Kolaczkowski, S. T., Plucinski, P., Beltran, F.J., Rivas, F. J., McLurgh, D. B. Wet air oxidation: a review of process technologies and aspects in reactor design. Chem. Eng. J., 1999, 73(2), 143–160.

31. Mets, B., Kaldas, K., Uustalu, J. M., Lopp, M. The Lille-Blokker model – an excellent tool to describe the structure of kukersite. Oil Shale, 2023, 40(3), 234–243.

Back to Issue