ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
Numerical simulation and optimization of the in-situ heating and cracking process of oil shale; pp. 212–233
PDF | https://doi.org/10.3176/oil.2023.3.03

Authors
Tengfei Sun, Hao Liu, Yang Zhang, Baokang Wu, Zhilei Wang, Yacong Fan, Yongan Li, Yongliang Han, Ziyang Liu
Abstract

In this paper, the temperature field variation and cumulative oil production rate over time with fracture number, fracture width and gas injection flow rate were investigated using Fluent software. A mathematical model of heat transfer within oil shale and a three-dimensional mathematical model of its in situ heating and fracturing were established. The simulation results showed that Model II had the highest oil shale heating rate at different fracture numbers, being 26.32% higher than that of Model I. When exploring fracture width, Model I completed all fractures in the oil shale region in 190 days. Model IV was 15 days slower than Model I with the heating rate being 7.89% lower, while Model V was 10 days faster than Model I with the heating rate being 5.26% higher. Increasing the fracture width of the oil shale region appropriately could help to increase the oil shale in-situ heating and fracturing rate. Considering gas injection flow rate, the higher the gas flow rate, the faster the increase of the oil shale area temperature and the shorter the time to reach the 10-day peak oil production rate. The peak was also larger and the fracturing of the oil shale area took place more quickly.

References

1. Ma, J. X., Xue, L. F., Zhao, J. M., Bai, F. T. Numerical simulation and design optimization of temperature field of oil shale in situ pyrolysis and exploitation. Science Technology and Engineering, 2019, 19(5), 94‒103 (in Chinese).

2. Zhang, M., Guo, W., Li, Q., Sun, Z., Wang, Z., Zhao, S., Qu, L. Research on heat transfer characteristics and numerical simulation of oil shale in-situ pyrolysis heater with spiral baffle. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2018, 45(7), 62‒65 (in Chinese).

3. Li, N. Y., Wang, Y., Chen, F., Han, Y. L., Chen, W. B., Kang, J. Development status and prospects of in-situ conversion technology in oil shale. Special Oil & Gas Reservoirs, 2022, 29(3), 1‒8 (in Chinese).

4. Wang, Z. D. Study on Heat Transfer Performance and Heating Efficiency of Electric Heater with Continuous Helical Baffles for Oil Shale in-Situ Conversion. PhD Thesis, Jilin University, 2021.

5. Li, X. X. Numerical Simulation of Temperature Field in Situ Modified by Electric Heating of Oil Shale. MS Thesis, Northeastern Petroleum University, 2021 (in Chinese).

6. Fu, C., Ding, H., Chen, W. M. Resources distribution and comprehensive utilization of oil shale and coal symbiosis in China. Coal Quality Technology, 2021, 36(3), 1‒13.

7. Zhu, Y. Study on the Influence of Oil Shale Bedding Planes on Its Mechanical Properties, Fracture Initiation and Extension. PhD Thesis, Jilin University, 2022 (in Chinese).

8. Jiang, P. F. Experimental Research on Oil Shale In-Situ Conversion by Acid Fracturing-Heat Injection. PhD Thesis, Jilin University, 2016 (in Chinese).

9. Kang, Z., Zhao, Y., Yang, D. Review of oil shale in-situ conversion technology. Appl. Energy., 2020, 269, 115121.
https://doi.org/10.1016/j.apenergy.2020.115121

10. Pan, Y., Mu, J., Ning, J., Yang, S. Research on in-situ oil shale mining technology. Int. J. Pharm. Sci. Inven., 2012, 1(1), 1‒7.

11. Chen, C., Wang, W., Sun, Y. Guo, W., Yan, X., Wang, H., Zhao, G., Wen, J., Fang, Q., Liu, X. Influence of the heat transfer efficiency of oil shale in situ fragmentation. In: Progress of Geo-Disaster Mitigation Technology in Asia (Wang, F., Miyajima, M., Li, T., Shan, W., Fathani, T. F., eds.), 2013, 577‒583.
https://doi.org/10.1007/978-3-642-29107-4_34

12. Zhao, F., Xi, C., Zhang, X., Shi, X., Yang, F., Mu, H., Guan, W., Jiang, Y., Wang, H. Babadagli, T., Li, H. Evaluation of a field-wide post-steam in-situ combustion performance in a heavy oil reservoir in China. In: SPE Russian Petroleum Technology Conference. OnePetro, 26‒29 October 2020, Paper Number SPE-201815-MS.
https://doi.org/10.2118/201815-RU

13. Song, X., Zhang, C., Shi, Y., Li, G. Production performance of oil shale in-situ conversion with multilateral wells. Energy, 2019, 189, 116145.
https://doi.org/10.1016/j.energy.2019.116145

14. Gao, Y., Long, Q., Su, J., He, J., Guo, P. Approaches to improving the porosity and permeability of Maoming oil shale, South China. Oil Shale, 2016, 33(3), 216‒227. 
https://doi.org/10.3176/oil.2016.3.02

15. Wang, L., Yang, D., Li, X., Zhao, J., Wang, G., Zhao, Y. Macro and meso characteristics of in-situ oil shale pyrolysis using superheated steam. Energies, 2018, 11(9), 2297.
https://doi.org/10.3390/en11092297

16. Hu, S., Wu, H., Liang, X., Xiao, C., Zhao, Q., Cao, Y., Han, X. A preliminary study on the eco-environmental geological issue of in-situ oil shale mining by a physical model. Chemosphere, 2022, 287, 131987.
https://doi.org/10.1016/j.chemosphere.2021.131987

17. Wang, G., Liu, S., Yang, D., Fu, M. Numerical study on the in-situ pyrolysis process of steeply dipping oil shale deposits by injecting superheated water steam: A case study on Jimsar oil shale in Xinjiang, China. Energy, 2022, 239, Part C, 122182.
https://doi.org/10.1016/j.energy.2021.122182

18. He, W., Sun, Y., Shan, X. Organic matter evolution in pyrolysis experiments of oil shale under high pressure: Guidance for in situ conversion of oil shale in the Songliao Basin. J. Anal. Appl. Pyrolysis, 2021, 155, 105091.
https://doi.org/10.1016/j.jaap.2021.105091

19. Wang, Z., Yang, F., Fu, D., Ma, L., Duan, Z., Wang, Q., Kang, S., Guo, W. Economic and heating efficiency analysis of double-shell downhole electric heater for tar-rich coal in-situ conversion. Case Stud. Therm. Eng., 2023, 41, 102596.
https://doi.org/10.1016/j.csite.2022.102596

20. Kang, Z. Q., Zhao, Y. S., Yang, D. Physical principle and numerical analysis of oil shale development using in-situ conversion process technology. Acta Petrolei Sinica, 2008, 29(4), 592‒595+600 (in Chinese).

21. Yang, H., Duan, Y. X. A feasibility study on in-situ heating of oil shale with injection fluid in China. J. Petrol. Sci. Eng., 2014, 122, 304‒317.
https://doi.org/10.1016/j.petrol.2014.07.025

22. Jiang, P., Zhang, D., Li, B., Son, C. Design and numerical simulation of in-situ pyrolysis of oil shale through horizontal well fracturing with nitrogen injection. Int. J. Heat Technol., 2021, 39(2), 417‒423.
https://doi.org/10.18280/ijht.390210

23. Li, Y. B., Xue, L. F., Ma, J. X. Numerical simulation of the changes of porosity and permeability in in-situ pyrolysis of oil shale. Science Technology and Engineering, 2018, 18(34), 43‒50 (in Chinese).

24. Xue, J. X., Liu, Z. H. Numerical simulation of the temperature field distribution of oil shale under in-situ process by the electricity heating method. Chinese Journal of Underground Space and Engineering, 2015, 11(3), 669‒672 (in Chinese).

25. Jiang, P. F., Sun, Y. H., Guo, W., Li, Q. Heating technology and heat transfer simulation for oil shale of in-situ pyrolysis by fracturing and nitrogen injection. Journal of Northeastern University (Natural Science), 2015, 36(9), 1353‒1357+1368 (in Chinese).

26. Wang, Y. Y., Xue, L. F., Sun, X. Impact of fracture occurrence and relative position on the heating effect in oil shale in-situ mining. Science Technology and Engineering, 2019, 19(35), 141‒147 (in Chinese).

27. Zheng, Y., Lei, G., Yao, C., Fu, J., Wang, L., Zhang, X., Jia, X. A calculation model about reservoir thermal efficiency of in-situ upgrading for oil shale via steam injection. J. Petrol. Sci. Eng., 2020, 192, 107267.
https://doi.org/10.1016/j.petrol.2020.107267

28. Wang, B. Q. Numerical Simulation of Gas Injection In-Situ Exploit of Oil Shale and Underground Frozen Wall Formation. MS Thesis, Jilin University, 2014 (in Chinese).

19. Zhou, K. Numerical Simulation of Temperature Field and Field Test of In-Situ Pyrolysis of Oil Shale with Hot Nitrogen. MS Thesis, Jilin University, 2017 (in Chinese).

30. Jiang, Y. D., Yang, X. Y., Xian, X. F., Xiong, L., Yi, J. The infiltration equation of coal bed under the cooperation of stress field, temperature field and sound field. Journal of China Coal Society, 2010, 35(3), 434‒438 (in Chinese).

31. Sun, C. L., Wang, Y., Shao, H. L., An, J. N., Zhao, Y. D., Yang, Q. R. Numerical simulation of the development of oil shale in situ electrical temperature field. Journal of Liaoning Shihua University of Petroleum & Chemical Technology, 2015, 35(4), 40‒43 (in Chinese).

32. Shi, W. P., Zheng, H., Wang, B. Q. Numerical simulation of electric heating for oil shale in horizontal wells. Oil Drilling & Production Technology, 2014,36(5), 80‒83 (in Chinese).

33. Zhao, J. M., Cao, D. F., Liu, Y. M., Xing, S. F. Fluid-thermal-solid coupling simulation of oil shale in-situ pyrolysis by horizontal well pattern. Science Technology and Industry, 2022, 22(1), 329‒337 (in Chinese).

Back to Issue