eesti teaduste
akadeemia kirjastus
SINCE 1984
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
Experimental study on the thermophysical properties of Jimsar oil shale; pp. 194–211

Zhijun Liu, Haotian Ma, Zhen Wang, Yuzhen Guo, Wei Li, Zhiyuan Hou

Oil shale is a potential strategic reserve resource and a significant supplementary energy source due to its huge reserves and numerous utilization methods. The study of oil shale thermophysical properties can provide significant guidance for proposed in-situ mining. Taking the oil shale in Jimsar, Xinjiang as an example and using thermophysical experiments, this paper studies the variation in thermophysical properties of oil shale with temperature. The results show that the specific heat capacity of oil shale increases with increasing temperature below 390 °C, but the change decreases with increase of temperature; however, when the temperature exceeds 390 °C, the specific heat value change fluctuates irregularly. At 31–720 °C, the thermal expansion of oil shale indicates obvious anisotropy. Namely, in the vertical bedding direction, the thermal expansion rate manifests a typical two-stage increase, while in the parallel bedding direction, the thermal expansion coefficient exhibits an overall increasing trend but fluctuates significantly due to the reaction of components within the oil shale.


1. World Energy Council. Full Report World Energy Trilemma Index 2022 Report

2. Xu, Y., Sun, P., Yao, S., Liu, Z., Tian, X., Li, F., Zhang, J. Progress in exploration, development and utilization of oil shale in China. Oil Shale, 2019, 36(2), 285–304.

3. Dyni, J. R. Geology and resources of some world oil-shale deposits. Oil Shale, 2003, 20(3), 193–252.

4. Maaten, B., Loo, L., Konist, A., Nešumajev, D., Pihu, T., Külaots, I. Decomposi-tion kinetics of American, Chinese and Estonian oil shales kerogen. Oil Shale, 2016, 33(2), 167–183.

5. Soone, J., Doilov, S. Sustainable utilization of oil shale resources and comparison of contemporary technologies used for oil shale processing. Oil Shale, 2003, 20(3S), 311–323.

6. Bai, F., Sun, Y., Liu, Y., Li, Q., Guo, M. Thermal and kinetic characteristics of pyrolysis and combustion of three oil shales. Energy Convers. Manag., 2015, 97, 374–381.

7. Symington, W. A., Kaminsky, R. D., Meurer, W. P., Otten, G. A., Thomas, M. M., Yeakel, J. D. ExxonMobil’s Electrofrac process for in situ oil shale conversion. 236th ACS National Meeting & Exposition, Philadelphia, PA, August 17–21, 2008, In: Oil Shale: A Solution to the Liquid Fuel Dilemma(Ogunsola, O. I., Hartstein, A. M., Ogunsola, O., eds.), ACS Sym. Ser, 2010, 1032, Philadelphia, PA, 185–216.

8. Beer, G., Zhang, E., Wellington, S., Ryan, R., Vinegar, H. Shell’s in situ conversion process – factors affecting the properties of produced shale oil. In: Proceedings of the 28th Oil Shale Symposium, Golden, Colorado, USA, 13–15 October 2008, Colorado School of Mines, 68.

9. Jaber, J. O., Probert, S. D. Non-isothermal thermogravimetry and decomposition kinetics of two Jordanian oil shales under different processing conditions. Fuel Process. Technol., 2000, 63(1), 57–70.

10. Sun, Y., Bai, F., Liu, B., Liu, Y., Guo, M., Guo, W., Wang, Q., Lü, X., Yang, F., Yang, Y. Characterization of the oil shale products derived via topochemical reaction method. Fuel, 2014, 115, 338–346.

11. Liu, Q., Han, X., Li, Q., Huang, Y., Jiang, X. TG–DSC analysis of pyrolysis process of two Chinese oil shales. J. Therm. Anal. Calorim., 2014, 116(1), 511–517.

12. Zhang, H., Liu, J., Kang, Z., Yang, D. Experimental research of the pyrolytic properties and mineral components of Bogda oil shale, China. Oil Shale, 2018, 35(3), 214–229.

13. Yan, J., Jiang, X., Han, X., Liu, J. A TG–FTIR investigation to the catalytic effect of mineral matrix in oil shale on the pyrolysis and combustion of kerogen. Fuel, 2013, 104, 307–317.

14. Liu, Z., Ma, H., Guo, J., Liu, G., Wang, Z., Guo, Y. Pyrolysis characteristics and effect on pore structure of Jimsar oil shale based on TG-FTIR-MS analysis. Geofluids2022, Article ID 7857239.

15. Liu, Z., Yang, D., Hu, Y., Zhang, J., Shao, J., Song, S., Kang, Z. Influence of in situ pyrolysis on the evolution of pore structure of oil shale. Energies, 2018, 11(4), 755.

16. Huang, Y., Fan, C., Han, X., Jiang, X. A TGA-MS investigation of the effect of heating rate and mineral matrix on the pyrolysis of kerogen in oil shale. Oil Shale, 2016, 33(2), 125–141.

17. Wang, S., Liu, J., Jiang, X., Han, X., Tong, J. Effect of heating rate on products yield and characteristics of non-condensable gases and shale oil obtained by retorting Dachengzi oil shale. Oil Shale, 2013, 30(1), 27–47.

18. Tiwari, P., Deo, M. Compositional and kinetic analysis of oil shale pyrolysis using TGA–MS. Fuel, 2012, 94, 333–341.

19. Khalil, A. M. Oil shale pyrolysis and effect of particle size on the composition of shale oil. Oil Shale, 2013, 30(2), 136–146.

20. Jaber, J. O., Amri, A., Ibrahim, K. Experimental investigation of effects of oil shale composition on its calorific value and oil yield. Int. J. Oil, Gas Technol., 2011, 4(4), 307–321.

21. Begum, M., Yassin, M. R., Dehghanpour, H. Effect of kerogen maturity on organic shale wettability: A Duvernay case study. Mar. Petrol. Geol., 2019, 110, 483–496.

22. El Sayed, A. M. A. Thermophysical study of sandstone reservoir rocks. J. Petrol. Sci. Eng., 2011, 76(3–4), 138–147.

23. Guo, Y., Li, X., Huang, L. Changes in thermophysical and thermomechanical properties of thermally treated anisotropic shale after water cooling. Fuel, 2022, 327, 125241.

24. Abdulagatov, I. M., Abdulagatova, Z. Z., Kallaev, S. N., Bakmaev, A. G., Omarov, Z. M. Heat capacity and thermal diffusivity of heavy oil saturated rock materials at high temperatures. J. Therm. Anal. Calorim., 2020, 142(1), 519–534.

25. Verma, A. K., Jha, M. K., Maheshwar, S., Singh, T. N., Bajpai, R. K. Temperature-dependent thermophysical properties of Ganurgarh shales from Bhander group, India. Environ. Earth Sci., 2016, 75(4), 300.

26. Arafin, S. Thermophysical properties of reservoir rocks. J. Phys. Chem. Solids, 2019, 129, 99–110.

27. Huang, Z., Zeng, W., Wu, Y., Li, S., Gu, Q., Zhao, K. Effects of temperature and acid solution on the physical and tensile mechanical properties of red sandstones. Environ. Sci. Pollut. Res., 2021, 28, 20608–20623.

28. Tang, F., Wang, L., Lu, Y., Yang, X. Thermophysical properties of coal measure strata under high temperature. Environ. Earth Sci., 2015, 73, 6009–6018.

29. Zhu, X., Gao, Z., Chen, T., Wang, W., Lu, C., Zhang, Q. Study on the thermophysical properties and influencing factors of regional surface shallow rock and soil in China. Front. Earth Sci., 2022, 10, 864548.

30. Shaik, S., Ashok Babu, T. P. Influence of ambient air relative humidity and temperature on thermal properties and unsteady thermal response characteristics of laterite wall houses. Build. Environ., 2016, 99, 170–183.

31. Li, B., Wang, J., Bi, M., Gao, W., Shu, C. Experimental study of thermophysical properties of coal gangue at initial stage of spontaneous combustion. J. Hazard. Mater., 2020, 400, 123251.

32. Khraisha, Y. H. Thermal conductivity of oil shale particles in a packed bed. Energy Sources, 2002, 24(7), 613–623.

33. Jha, M. K., Verma, A. K., Maheshwar, S., Chauhan, A. Study of temperature effect on thermal conductivity of Jhiri shale from Upper Vindhyan, India. Bull. Eng. Geol. Environ., 2016, 75, 1657–1668.

34. Liu, Z., Sun, Y., Guo, W., Li, Q. Reservoir-scale study of oil shale hydration swelling and thermal expansion after hydraulic fracturing. J. Petrol. Sci. Eng., 2020, 195, 107619.

35. Homand-Etienne, F., Houpert, R. Thermally induced microcracking in granites: characterization and analysis. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1989, 26(2), 125–134.

36. Zhao, J., Kang, Z. Permeability of oil shale under in situ conditions: Fushun oil shale (China) experimental case study. Nat. Resour. Res., 2021, 30(1), 753–763.

37. Zhao, J., Yang, D., Kang, Z., Feng, Z. A micro-CT study of changes in the internal structure of Daqing and Yan’an oil shales at high temperatures. Oil Shale, 2012, 29(4), 357–367.

38. He, W., Meng, Q., Lin, T., Wang, R., Liu, X., Ma, S., Li, X., Yang, F., Sun, G. Evolution features of in-situ permeability of low-maturity shale with the increasing temperature, Cretaceous Nenjiang Formation, northern Songliao Basin, NE China. Petr. Explor. Dev., 2022, 49(3), 516–529.

39. Ma, Z., Xu, L., Gong, P., Chen, Y., Zhang, L. The thermal expansion characteristics of mudstone. Therm. Sci., 2019, 23(6), 3731–3737.

40. Wu, X., Huang, Z., Zhang, S., Cheng, Z., Li, R., Song, H., Wen, H., Huang, P. Damage analysis of high-temperature rocks subjected to LN2 thermal shock. Rock Mech. Rock Eng., 2019, 52, 2585–2603.

41. Zhou, H., Liu, H., Hu, D., Yang, F., Lu, J., Zhang, F. Anisotropies in mechanical behaviour, thermal expansion and P-wave velocity of sandstone with bedding planes. Rock Mech. Rock Eng., 2016, 49, 4497–4504.

42. Li, B., Wong, R. C. K. A mechanistic model for anisotropic thermal strain behavior of soft mudrocks. Engi. Geol., 2017, 228, 146–157.

43. Yang, D., Wang, G., Kang, Z., Zhao, J., Lv, Y. Experimental investigation of anisotropic thermal deformation of oil shale under high temperature and triaxial stress based on mineral and micro-fracture characteristics. Nat. Resour. Res., 2020, 29, 3987–4002.

44. Feng, Z., Qiao, M., Dong, F., Yang, D., Zhao, P. Thermal expansion of triaxially stressed mudstone at elevated temperatures up to 400°C. Adv. Mater. Sci. Eng., 2020, Article ID 8140739.

45. Yu, H., Jiang, X. Influence of particle diameter on pyrolysis property and kinetic parameter of oil shale. Journal of Zhongyuan University of Technology, 2007, 78(1), 1–4 (in Chinese).

46. Zhou, K., Sun, Y., Li, Q., Guo, W., Lv, S., Han, J. Experimental research about thermogravimetric analysis and thermal physical properties of Nong’an oil shale. Global Geology, 2016, 35(4), 1178–1184 (in Chinese).

47. Schärli, U., Rybach, L. Determination of specific heat capacity on rock fragments. Geothermics, 2001, 30(1), 93–110.

48. Strydom, C. A., Hudson-Lamb, D. L., Potgieter, J. H., Dagg, E. The thermal dehydration of synthetic gypsum. Thermochim. Acta, 1995, 269–270, 631–638.

49. Jaber, J. O., Probert, S. D. Pyrolysis and gasification kinetics of Jordanian oil-shales. Appl. Energy, 1999, 63(4), 269–286.

50. Bai, F., Sun, Y., Liu, Y., Guo, M. Evaluation of the porous structure of Huadian oil shale during pyrolysis using multiple approaches. Fuel, 2017, 187, 1–8.

51. Saif, T., Lin, Q., Bijeljic, B., Blunt, M. J. Microstructural imaging and characterization of oil shale before and after pyrolysis. Fuel, 2017, 197, 562–574.

52. Savest, N., Oja, V. Heat capacity of kukersite oil shale: Literature overview. Oil Shale, 2013, 30(2), 184–192.

53. Johnson, S. E., Song, W. J., Cook, A. C., Vel, S. S., Gerbi, C. C. The quartz α↔β phase transition: Does it drive damage and reaction in continental crust? Earth Planet. Sci. Lett., 2021, 553, 116622.

54. Zhu, Z., Yang, S., Wang, R., Tian, H., Jiang, G., Dou, B. Effects of high temperature on the linear thermal expansion coefficient of Nanan granite. Acta Geod. Geophys., 2022, 57, 231–243.

55. Sun, L., Tuo, J., Zhang, M., Wu, C., Wang, Z., Zheng, Y. Formation and development of the pore structure in Chang 7 member oil-shale from Ordos Basin during organic matter evolution induced by hydrous pyrolysis. Fuel, 2015, 158, 549–557.

56. Schrodt, J. T., Ocampo, A. Variations in the pore structure of oil shales during retorting and combustion. Fuel, 1984, 63(11), 1523–1527.

57. Ribas, L., Dos Reis Neto Neto, J. M., França, A. B., Porto Alegre, H. K. The behavior of Irati oil shale before and after the pyrolysis process. J. Petrol. Sci. Eng., 2017, 152, 156–164.

58. Yu, Y., Liang, W., Bi, J., Geng, Y., Kang, Z., Zhao, Y. Thermophysical experiment and numerical simulation on thermal cracking of oil shale at high temperature. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(6), 1106–1115 (in Chinese).

Back to Issue