eesti teaduste
akadeemia kirjastus
SINCE 1984
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
Selection of favourable targets for the in-situ conversion of continental oil shale in China; pp. 177–193

Pingchang Sun, Wangpeng Li, Zhaojun Liu, Daming Niu, Xiaoling Wu, Lianxin Tao, Zhuo Wang, Zhisheng Luan

China has abundant oil shale resources and in-situ conversion is necessary for the large-scale, efficient and environmentally friendly development of this source rock. Despite the numerous researches carried out on in-situ transformation, reservoir reconstruction and heating technology, there is a lack of selection and evaluation criteria for high-quality mining areas. Therefore, it is urgent to perform geological evaluation and selection of favourable target areas for the in-situ conversion of oil shale-bearing areas in continental basins in China. In this paper, based on a wealth of research and previous studies, the geological characteristics of oil shale deposits in China’s continental basins are studied. The in-situ conversion of oil shale mainly depends on the quality of rock, deposit characteristics, resource amount and hydrological conditions for site selection. On this basis, geological parameters, such as oil yield, organic matter type and maturity, ore body thickness, stratum dip angle, tectonics, lithology of the oil shale body roof and floor, oil shale resources and water content, are further considered. In addition, in conformity with the factor product method, the comprehensive geological parameters of each mining area are obtained and sorted according to a weighting coefficient. The preliminary results reveal that the Fushun and Bagemaode mining areas are two first-class favourable target areas. Gaozhou, Maoming, Fuyu-Changchun Ridge and eight other mining areas are second-class, less favourable target areas, while 16 future alternative areas include Tongchuan, Qidaoquanzi, Tanshanling, etc.


1. Xu, Y. B., Sun, P. C., Yao, S. Q., Liu, Z. J., Tian, X. M., Li, F., Zhang, J. Q. Progress in exploration, development and utilization of oil shale in China. Oil Shale, 2019, 36(2), 285–304.

2. Zhao, W. Z., Hu, S. Y., Hou, L. H. Connotation and strategic role of in-situ conversion processing of shale oil underground in the onshore China. Pet. Explor. Dev., 2018, 45(4), 563–572.

3. Speight, J. G. Chapter 5. In Situ Retorting. In: Shale Oil Production Processes (Speight, J. G., ed.). Gulf Professional Publishing, Boston, 2012, 123–138.

4. Lee, S., Speight, J. G., Loyalka, S. K. Handbook of Alternative Fuel Technologies. CRC Press, 2014.

5. Sun, Y. H., Bai, F. T., Lü, X. S., Li, Q., Liu, Y. M., Guo, M. Y., Guo, W., Liu, B. C. A novel energy-efficient pyrolysis process: self-pyrolysis of oil shale triggered by topochemical heat in a horizontal fixed bed. Sci. Rep., 2015, 5, 8290, 1–8.

6. Zhao, J. M. Method and Process for Extracting Shale Oil and Gas by Fracturing and Chemical Retorting in Oil Shale In-Situ Horizontal Well. U.S. Patent. 2017, 9784086B2.

7. Kang, Z., Zhao, Y., Yang, D. Review of oil shale in-situ conversion technology. Appl. Energy, 2020, 269, 115121.

8. Wang, G, Y., Liu, S. W., Yang, D., Fu, M. X. Numerical study on the in-situ pyrolysis process of steeply dipping oil shale deposits by injecting superheated water steam: A case study on Jimsar oil shale in Xinjiang, China. Energy, 2021, 122182.

9. Zhao, S., Lü, X. S., Sun, Y. H., Huang, J. D. Thermodynamic mechanism evaluate the feasibility of oil shale pyrolysis by topochemical heat. Sci. Rep., 2021, 11, 5365.

10. Dinne, G. U. Retorting technology of oil shale. Developments in Petroleum Science, Book series, 1976, 5, 181–198.

11. Bai, F., Sun, Y., Liu, Y., Guo, M. Evaluation of the porous structure of Huadian oil shale during pyrolysis using multiple approaches. Fuel, 2017, 187, 1–8.

12. Burnham, A. K. Porosity and permeability of Green River oil shale and their changes during retorting. Fuel, 2017, 203, 208–213.

13. Saif, T., Lin, Q., Butcher, A. R., Bijeljic, B., Blunt, M. J. Multi-scale multi-dimensional microstructure imaging of oil shale pyrolysis using X-ray micro-tomography, automated ultra-high resolution SEM, MAPS mineralogy and FIB-SEM. Appl. Energy, 2017, 202, 628–647.

14. Liu, Z. J., Meng, Q. T., Dong, Q. S., Zhu, J. W., Guo, W., Ye, S. Q., Liu, R., Jia, J. L. Characteristics and resource potential of oil shale in China. Oil Shale, 2017, 34(1), 15–41.

15. Bechtel, A., Jia, J., Strobl, S., Sachsenhofer, R. F., Liu, Z., Gratzer, R., Püttmann, W. Palaeoenvironmental conditions during deposition of the Upper Cretaceous oil shale sequences in the Songliao Basin (NE China): Implications from geochemical analysis. Org. Geochem., 2012, 46, 76–95.

16. Sun, P. C., Liu, Z. J., Gratzer, R., Xu, Y. B., Liu, R., Li, B. Y., Meng, Q. T., Xu, J. J. Oil yield and bulk geochemical parameters of oil shales from the Songliao and Huadian Basins, China: A grade classification approach. Oil Shale, 2013, 30(3), 402–418.

17. Li, Y., Sun, P., Liu, Z., Wang, J., Zhang, M. Lake level controls on oil shale distribution in the Lucaogou Formation, Wujiawan Area, Junggar Basin, Northwest China. Energy Fuels, 2019, 33(9), 8383–8393.

18. Sun, P. C., Sachsenhofer, R. F., Liu, Z. J., Strobl, S. A. I., Meng, Q. T., Liu, R., Zhen, Z. Organic matter accumulation in the oil shale- and coal-bearing Huadian Basin (Eocene; NE China). Int. J. Coal Geol., 2013, 105, 1–15.

19. Bai, Y., Hua, T., Yan, K. Geological characteristics and some problems in development for oil shale in Northwest China. Oil Shale, 2011, 28(3), 380–397.

20. Cao, H. S., Shan, X. L., Sun, P. C., Chi, H. Z., Du, S. Geochemical characteristics of oil shale in the Triassic Chang7 subsection, southern Ordos basin, China, and palaeo-environment reconstruction. Neues Jahrb. Miner. Abh., 2016, 193(1), 45–57.

21. Moudgil, B. M., Arbiter, N. Oil shale beneficiation for above ground retorting. Min. Eng. (Littleton, Colo, United States), 1982, 9, 1336–1338.

22. Chen, H. J., Liu, Z. J., Zhu, J. W., Fu, Z. R. Dual-factor method for development optimization of oil shale bearing fields. Geology in China, 2011, 38(3), 742–749 (in Chinese with English abstract).

23. Zhao, W., Suyun, H. U., Hou, L. Connotation and strategic role of in-situ conversion processing of shale oil underground in the onshore China. Pet. Explor. Dev., 2018, 45(4), 563–572.

24. Thomas, G. W. Some effects of overburden pressure on oil shale during underground retorting. Soc. Petrol. Eng. J., 1966, 6(1), 1–8.

25. Karabakan, A., Yürüm, Y. Effect of the mineral matrix in the reactions of oil shales: 1. Pyrolysis reactions of Turkish Göynük and US Green River oil shales. Fuel, 1998, 77(12), 1303–1309.

26. Foltin, J. P., Lisboa, A. C. L., De Klerk, A. Oil shale pyrolysis: Conversion dependence of kinetic parameters. Energy Fuels, 2017, 31(7), 6766–6776.

27. Hou, L. Y., Sun, P. C., Liu, Z. J., Wan, T., Zhang, Q., Dong, X. Y. Qingshankou Formation oil shale exploitation in-situ pilot test demonstration area optimization. Coal Geology of China, 2021, 33(8), 9–16 (in Chinese with English abstract).

28. Wang, X., M., Wang, Q., Wu, C. L. Study of the effect of in situ minerals on the pyrolysis of oil shale in Fushun, China. RSC Adv., 2022, 12(31), 20239–20250.

29. Tan, G. Analysis on log response characteristics of oil shale and in-situ mining geological evaluation in Qingshankou Formation of south of Songliao Basin. IOP Conf. Ser.: Earth Environ. Sci., 2020, 514(2), 022080.

30. Miao, X. Y., Zhan, H. L., Zhao, K., Li, Y. Z., Sun, Q., Bao, R. M. Oil yield characterization by anisotropy in optical parameters of the oil shale. Energy Fuels, 2016, 30(12), 10365–10370.

31. Hutton, A. C., Kantsler, A. J., Cook, A. C., Mckirdy, D. M. Organic matter in oil shales. The APPEA Journal, 1980, 20(1), 44–67.

Back to Issue