ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
Treated oil shale ash and its capacity to remove Cd and Pb from aqueous solutions; pp. 308–324
PDF | https://doi.org/10.3176/oil.2022.4.05

Authors
Omar S. Al-Ayed, Tayel El-Hasan, Abdulaziz Amro, Mohammed Matouq, Fathi Kooli
Abstract

Cadmium (Cd) is the most highly toxic heavy metal even at a trace level. In this study, the oil shale ash treated material was used as an adsorbent to remove cadmium and lead (Pb) metals/ions from aqueous solutions. The absorbent treated oil shale material was characterized prior to experimental work using X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The effects of multiple factors on percent metal removal, including contact time, initial ions concentration and pH, are investigated. Results show that the adsorption capacities of Pb and Cd are 29.15 and 23.81 mgg–1, whereas removal efficiencies are 56% and 48% in 10 minutes, respectively. Removal efficiency and time of equilibrium are affected by the metal atomic weight (Pb 207.2 u and Cd 112.4 u) and pH values. The equilibrium isotherms were analyzed using Freundlich and Langmuir isotherm models and described by the Freundlich isotherm model indicating a heterogeneous surface of the adsorbent. The calculated Langmuir adsorption constant and maximum adsorption capacity of adsorbent, KL and qmax, are 1.313*10–2 and 25.25, respectively. The Freundlich adsorption constant Kand the characteristic constant of the Freundlich isotherm n are 0.5234 and 1.39, respectively.

References

1. Pyrzynska, K. Removal of cadmium from wastewaters with low-cost adsorbent. J. Environ. Chem. Eng., 2019, 7(1), 102795.
https://doi.org/10.1016/j.jece.2018.11.040

2. Al-Enezi, G., Hamoda, M. F., Fawzi, N. Ion exchange extraction of heavy metals from wastewater sludges. J. Environ. Sci. Health A, 2004, 39(2), 455–464.
https://doi.org/10.1081/ESE-120027536

3. Shawabkeh, R., Al-Harahsheh, A., Hami, M., Khlaifat, A. Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater. Fuel, 2004, 83(7–8), 981–985. 
https://doi.org/10.1016/j.fuel.2003.10.009

4. Bai, S., Chu, M., Zhou, L., Chang, Z., Zhang, C., Guo, H., Liu, B., Wang, S. Modified oil shale ash and oil shale ash zeolite for the removal of Cd2+ ion from aqueous solutions. Environ. Technol., 2019, 40(11), 1485–1493. 
https://doi.org/10.1080/09593330.2018.1537311

5. Zhu, B. L., Xiu, Z. M., Liu, N., Bi, H. T., Lv, C. X. Adsorption of lead and cadmium ions from aqueous solutions by modified oil shale ash. Oil Shale, 2012, 29(3), 268–278.
https://doi.org/10.3176/oil.2012.3.06

6. Flores, R., Espinoza, S. Kinetics studies on the process of Zn removal from wastewater using ultrasonically activated sorbents. Chem. Biochem. EngQ., 2017, 31(1), 123–130.
https://doi.org/10.15255/CABEQ.2015.2267

7. Pimentel, P. M., Oliveira, R. M. P. B., Melo, D. M. A., Melo, M. A. F., Assunção, A. L. C., Gonzales, G. Adsorption of chromium ions on oil shale waste. Braz. J. Pet. Gas, 2011, 5(2), 65–73.
https://doi.org/10.5419/bjpg2011-0008

8. Bao, W., Liu, L., Zou, H., Gan, S., Xu, X., Ji, G., Gao, G., Zheng, K. Removal of Cu2+ from aqueous solutions using Na-A zeolite from oil shale ash. Chinese J. Chem. Eng., 2013, 21(9), 974–982.
https://doi.org/10.1016/S1004-9541(13)60529-7

9. Lees, H., Järvik, O., Konist, A., Siirde, A., Maaten, B. Comparison of the ecotoxic properties of oil shale industry by-products to those of coal ash. Oil Shale, 2022, 39(1), 1–19.
https://doi.org/10.3176/oil.2022.1.01

10. Ghasem, N., Al-Marzouqi, M., Abdul Rahim, N. Removal of cadmium from industrial wastewater using water-soluble polymer via hollow fiber membranes. Int. J. Petrochem. Sci. Eng., 2016, 1(4), 88–90. 
https://doi.org/10.15406/ipcse.2016.01.00016

11. Un, U. T., Ocal, S. E. Removal of heavy metals (Cd, Cu, Ni) by electrocoagulation. Int. J. Environ. Sci. Dev., 2015, 6(6), 425–429. 
https://doi.org/10.7763/IJESD.2015.V6.630

12. Parmar, K. Removal of cadmium from aqueous solution using cobalt-silicate-precipitation tube (CoSPT) as adsorbent. Int. J. Sci. Inventions Today, 2013, 2(3), 204–215.

13. He, S., Li, Y., Weng, L., Wang, J., He, J., Liu, Y., Zhang, K., Wu, Q., Zhang, Y., Zhang, Z. Competitive adsorption of Cd2+, Pb2+ and Ni2+ onto Fe3+-modified argillaceous limestone: influence of pH, ionic strength, and natural organic matters. Sci. Total Environ., 2018, 637–638, 69–78.
https://doi.org/10.1016/j.scitotenv.2018.04.300

14. Beni, A. A., Esmaeili, A. Biosorption, an efficient method for removing heavy metals from industrial effluents: A Review. Environ. Technol. Innov., 2020, 17, 100503.
https://doi.org/10.1016/j.eti.2019.100503

15. Matouq, M., Saleh, M., Al-Ayed, O., El-Hasan, T., Hiroshi, Y., Tagawa, T. Biosorption of chromium and nickel from aqueous solution using pine cones, eucalyptus bark, and moringa pods: a comparative study. Water Pract. Technol., 2021, 16(1), 72–82.
https://doi.org/10.2166/wpt.2020.096

16. Genevois, N., Villandier, N., Chaleix, V., Poli, E., Jauberty, L., Gloaguen, V. Removal of cesium ion from contaminated water: Improvement of Douglas fir bark biosorption by a combination of nickel hexacyanoferrate impregnation and TEMPO oxidation. Ecol. Eng., 2017, 100, 186–193.
https://doi.org/10.1016/j.ecoleng.2016.12.012

17. Huang, Y., Chen, Q., Deng, M., Japenga, J., Li, T., Yang, X., He, Z. Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in southeast China. J. Environ. Manage., 2018, 207, 159–168.
https://doi.org/10.1016/j.jenvman.2017.10.072

18. Çolak, F., Atar, N., Yazıcıoğlu, D., Olgun, A. Biosorption of lead from aqueous solutions by Bacillus strains possessing heavy-metal resistance. Chem. Eng. J., 2011, 173(2), 422–428.
https://doi.org/10.1016/j.cej.2011.07.084

19. Jyothi, N. R. Heavy metal sources and their effects on human health. In: Heavy Metals: Their Environmental Impacts and Mitigation(Nazal, M., Zhao, H., eds,). IntechOpen, London, 2020. 
https://doi.org/10.5772/intechopen.95370

20. El-Hasan, T. Geochemistry of redox-sensitive trace elements and its implication on the mode of formation of the Upper Cretaceous oil shale, Central Jordan. Neues Jahrb. Geol. Palaontol. Abh., 2008, 249(3), 333–344.
https://doi.org/10.1127/0077-7749/2008/0249-0333

21. El-Hasan, T., Szczerba, W., Buzanich, G., Radtke, M., Riesemeier, H., Kersten, M. Cr(VI)/Cr(III) and As(V)/As(III) ratio assessments in Jordanian spent oil shale produced by aerobic combustion and anaerobic pyrolysis. Environ. Sci. Technol., 2011, 45(22), 9799–9805.
https://doi.org/10.1021/es200695e

22. El-Hasan, T., Mahasneh, B. Z., Abdel Hadi, N., Abdelhadi, M. High calcium ash incorporating into clay, sand and cement mortars used for encapsulation of some heavy metals. Jordan Journal of Earth and Environmental Sciences (JJEES), 2014, 6(3), 23–28.

23. El-Hasan, T. Characteristics and environmental risks of the oil shale ashes produced by aerobic combustion and anaerobic pyrolysis processes. Oil Shale, 2018, 35(1), 70–83.
https://doi.org/10.3176/oil.2018.1.05

24. El-Hasan, T., Abu-Jaber, N., Abdelhadi, N. Hazardous toxic elements mobility in burned oil shale ash, and attempts to attain short- and long-term solidification. Oil Shale, 2019, 36(2S), 226–249.
https://doi.org/10.3176/oil.2019.2S.12

25. El-Hasan, T., Harfouche, M., Aldrabee, A., Abdelhadi, N., Abu-Jaber, N., Aquilanti, G. Synchrotron XANES and EXAFS evidence for Cr+6and V+5 reduction within the oil shale ashes through mixing with natural additives and hydration process. Heliyon, 7(4), e06769. 
https://doi.org/10.1016/j.heliyon.2021.e06769

26. Kuusik, R., Uibu, M., Kirsimäe, K. Characterization of oil shale ashes formed at industrial-scale CFBC boilers. Oil Shale, 2005, 22(4S), 407–419.
https://doi.org/10.3176/oil.2005.4S.04

27. Bai, S., Chu, M., Zhou, L., Chang, Z., Zhang, C., Liu, B. Removal of heavy metals from aqueous solutions by X-type zeolite prepared from combination of oil shale ash and coal fly ash. Energ. Source. Part A, 2022, 44(2), 5113–5123. 
https://doi.org/10.1080/15567036.2019.1661549

28. Al-Harahsheh, M., Al-Ayed, O., Robinson, J., Kingman, S., Al-Harahsheh, A., Tarawneh, Kh., Saeid, A., Barranco, R. Effect of demineralization and heating rate on the pyrolysis kinetics of Jordanian oil shales. Fuel Process. Technol., 2011, 92(9), 1805–1811.
https://doi.org/10.1016/j.fuproc.2011.04.037

29. Zhao, Z., Yuan, J., Fu, M., Su, L., Li, Z. Removal of methylene blue from aqueous solution by using oil shale ash. Oil Shale, 2014, 31(2), 161–173.
https://doi.org/10.3176/oil.2014.2.06

30. Hamadi, A., Nabih, K. Synthesis of zeolites materials using fly ash and oil shale ash and their applications in removing heavy metals from aqueous solutions. J. Chem., 2018, 3, ID 6207910, 
https://doi.org/10.1155/2018/6207910

31. Bai, S., Zhou, L., Chang, X., Zhang, C., Chu, M. Synthesis of Na-X zeolite from Longkou oil shale ash by alkaline fusion hydrothermal method. Carbon Resour. Convers., 2018, 1(3), 245–250.
https://doi.org/10.1016/j.crcon.2018.08.005

32. Foo, K. Y., Hameed, B. H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J., 2010, 156(1), 2–10.
https://doi.org/10.1016/j.cej.2009.09.013

33. Bao, W. W., Zou, H. F., Gan, S. C., Xu, X. C., Ji, G. J., Zheng, K. Y. Adsorption of heavy metal ions from aqueous solutions by zeolite based on oil shale ash: Kinetic and equilibrium studies. Chem. Res. Chin. Univ., 2013, 29(1), 126–131.
https://doi.org/10.1007/s40242-013-2139-2

34. Miyah, Y., Benjelloun, M., Lahrichi, A., Mejbar, F., Iaich, S., El Mouhri, G., Kachkoul, R., Zerrouq, F. Highly-efficient treated oil shale ash adsorbent for toxic dyes removal: Kinetics, isotherms, regeneration, cost analysis and optimization by experimental design. J. of Enviro. Chem. Eng., 2021, 9(6), 106694.
https://doi.org/10.1016/j.jece.2021.106694

35. Neshumayev, D., Pihu, T., Siirde, A., Järvik, O., Konist, A. Solid heat carrier oil shale retorting technology with integrated CFB technology. Oil Shale, 2019, 36(2S), 99–113.
https://doi.org/10.3176/oil.2019.2S.02

Back to Issue