ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2021): 1.442
Numerical study of the flow, heat transfer and pyrolysis process in the gas full circulation oil shale retort; pp. 317–337
PDF | 10.3176/oil.2021.4.03

Authors
Luwei Pan, Hao Lu, Fangqin Dai, Shaohui Pei, Qicheng Wu, Jianning Huang
Abstract

A three-dimensional mathematical model of the 300 t/d gas full circulation oil shale retort is developed to investigate the flow-thermo-pyrolysis behaviors in the retorting process in this work. The velocity of reheated recycled gas decreases gradually from the wall regions toward the central regions of the retort on the same horizontal surface, and the velocity of oil shale is just the opposite. In the pre-heating and retorting stages, the average temperature of gases is about 30 °C higher than that of oil shale on the same level, and the temperatures of gas and oil shale both decrease gradually from the wall regions to the three central regions, which results in that the pyrolysis reaction of oil shale gradually diffuses from the former regions to the latter regions during the downward-moving process. The results also illustrate that oil shale particles larger than 50 mm and smaller than 20 mm should be mixed with 20–50 mm oil shale particles at a proper ratio rather than being fed into the retort directly, to enhance oil yield and the thermal efficiency of the retort.

References

1. Mozaffari, P., Baird, Z. S., Listak, M., Oja, V. Vapor pressures of narrow gasoline fractions of oil from industrial retorting of Kukersite oil shale. Oil Shale, 2020, 37(4), 288‒303.
https://doi.org/10.3176/oil.2020.4.03

2. Sabanov, S., Mukhamedyarova, Z. Prospectivity analysis of oil shales in Kazakhstan. Oil Shale, 2020, 37(4), 269‒280.
https://doi.org/10.3176/oil.2020.4.01

3. Dong, R. T., Xia, L. Z., Wang, H. N., Jiao, D. S. 3-D CFD simulation of oil shale drying in fluidized bed and experimental verification. Oil Shale, 2020, 37(4), 334‒356.
https://doi.org/10.3176/oil.2020.4.06

4. Bai, J. R., Bai, Z., Wang, Q., Li, S. Y. Process simulation of oil shale comprehensive utilization system based on Huadian-type retorting technique. Oil Shale, 2015, 32(1), 66‒81.
https://doi.org/10.3176/oil.2015.1.05

5. Yue, C. T., Liu, Y., Ma, Y., Li, S. Y., He, J. L., Qiu, D. K. Influence of retorting conditions on the pyrolysis of Yaojie oil shale. Oil Shale, 2014, 31(1), 66‒78.
https://doi.org/10.3176/oil.2014.1.07

6. Qian, J. L., Yin, L., Wang, J. Q., Li, S.Y., Han, F., He, Y. G. Oil Shale ‒ Petroleum Alternative. China Petrochemical Press, Beijing, 2010.

7. Lin, L. X., Zhang, C., Li, H. J., Lai, D. G., Xu, G. W. Pyrolysis in indirectly heated fixed bed with internals: The first application to oil shale. Fuel Process. Technol., 2015, 138, 147‒155.
https://doi.org/10.1016/j.fuproc.2015.05.023

8. Wang, Q. Q., Ma, Y., Li, S. Y., Yue, C. T., He, L. Expanding exergy analysis for the sustainability assessment of SJ-type oil shale retorting process. Energ. Convers. Manag., 2019, 187, 29‒40.
https://doi.org/10.1016/j.enconman.2019.02.077

9. He, J. L., Wang, Q. Development and application of Estonia Galoter technology. Journal of Northeast Dianli University, 2016, 36(2), 76‒80 (in Chinese).

10. Wu, Q. C. Oil Shale Dry Distillation Technology. Liaoning Science and Technology Publishing House, Shenyang, 2012 (in Chinese).

11. Stahnke, C., Silva, M. K., Rosa, L. M., Noriler, D., Martignoni, W. P., Bastos, J. C. S. C., Meier, H. F. Oil shale reactor: process analysis and design by CFD. Chem. Eng. Res. Des., 2019, 152, 180‒192.
https://doi.org/10.1016/j.cherd.2019.09.043

12. Rebordinos, J. G., Herce, C., Gonzalez-Espinosa, A., Gil, M., Cortes, C., Brunet, F., Ferre, L., Arias, A. Evaluation of retrofitting of an industrial steam cracking furnace by means of CFD simulations. Appl. Therm. Eng., 2019, 162, 114206.
https://doi.org/10.1016/j.applthermaleng.2019.114206

13. Peng, J., Chen, D. Q., Xu, J. J., Hu, L., Liu, H. Z. CFD simulation focusing on void distribution of subcooled flow boiling in circular tube under rolling condition. Int. J. Heat Mass Tran., 2020, 156, 119790.
https://doi.org/10.1016/j.ijheatmasstransfer.2020.119790

14. Zhou, H. R., Zeng, S., Yang, S. Y., Xu, G. W., Qian, Y. Modeling and analysis of oil shale refinery process with the indirectly heated moving bed. Carbon Resour. Convers., 2018, 1(3), 260‒265.
https://doi.org/10.1016/j.crcon.2018.08.001

15. Wang, Q., Wang, Y. F., Zhang, H. X., Xu, X. C., Yang, Q. K., Wang, P. The simulation study of application of the FG-DVC model to the pyrolysis of Huadian oil shale of China at different heating rates. Oil Shale, 2016, 33(2), 111‒124.
https://doi.org/10.3176/oil.2016.2.02

16. You, Y. L., Wang, X. Y., Han, X. X., Jiang, X. M. Kerogen pyrolysis model based on its chemical structure for predicting product evolution. Fuel, 2019, 246, 149‒159.
https://doi.org/10.1016/j.fuel.2019.02.075

17. Fletcher, T. H., Barfuss, D., Pugmire, R. J. Modeling light gas and tar yields from pyrolysis of Green River oil shale demineralized kerogen using the chemical percolation devolatilization model. Energy Fuels, 2015, 29(8), 4921‒4926.
https://doi.org/10.1021/acs.energyfuels.5b01146

18. Wang, Q., Ren, L. G., Wang, R., Bai, J. R., Wang, H. T., Yan, Y. H. Characterization of oil shales by 13C-NMR and the simulation of pyrolysis by FLASHCHAIN. J. Fuel Chem. Technol., 2014, 42(3), 303‒308 (in Chinese).

19. Lin, W., Feng, Y. H., Zhang, X. X. Numerical study of volatiles production, fluid flow and heat transfer in coke ovens. Appl. Therm. Eng., 2015, 81, 353‒358.
https://doi.org/10.1016/j.applthermaleng.2015.02.056

20. Jin, K., Feng, Y. H., Zhang, X. X., Wang, M. D., Yang, J. F., Ma, X. B. Simulation of transport phenomena in coke oven with staging combustion. Appl. Therm. Eng., 2013, 58(1‒2), 354‒362.
https://doi.org/10.1016/j.applthermaleng.2013.04.056

21. Modest, M. F. Radiative Heat Transfer, 2nd Edition. Academic Press, San Diego, 2003.
https://doi.org/10.1016/B978-012503163-9/50023-0

22. Wang, F. Q., Tan, J. Y., Yong, S., Tan, H. P., Chu, S. X. Thermal performance analyses of porous media solar receiver with different irradiative transfer models. Int. J. Heat Mass Tran., 2014, 78, 7‒16.
https://doi.org/10.1016/j.ijheatmasstransfer.2014.06.035

23. Chen, X., Sun, C., Xia, X. L., Liu, R. Q., Wang, F. Q. Conjugated heat transfer analysis of a foam filled double-pipe heat exchanger for high-temperature application. Int. J. Heat Mass Tran., 2019, 134, 1003‒1013.
https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.100

24. Wang, F. Q., Shuai, Y., Wang, Z. Q., Leng, Y., Tan, H. P. Thermal and chemical reaction performance analyses of steam methane reforming in porous media solar thermochemical reactor. Int. J. Hydrog. Energy, 2014, 39(2), 718‒730.
https://doi.org/10.1016/j.ijhydene.2013.10.132

25. Wang, F. Q., Yong, S., Tan, H. P., Yu, C. L. Thermal performance analysis of porous media receiver with concentrated solar irradiation. Int. J. Heat Mass Tran., 2013, 62, 247‒254.
https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.003

26. Pan, L.W., Dai, F. Q., Tian, Y. Q., Zhang, F. H. Experimental investigation of the sphericity of irregularly shaped oil shale particle groups. Adv. Powder Technol., 2015, 26(1), 66‒72.
https://doi.org/10.1016/j.apt.2014.08.006

27. Guo, Z. C., Tang, H. Q. Numerical simulation for a process analysis of a coke oven. China Particuology, 2005, 3(6), 373‒378.
https://doi.org/10.1016/S1672-2515(07)60217-6

28. Pan, L. W., Dai, F. Q., Li, G. Q., Liu, S. A TGA/DTA-MS investigation to the influence of process conditions on the pyrolysis of Jimsar oil shale. Energy, 2015, 86, 749‒757.
https://doi.org/10.1016/j.energy.2015.04.081

29. Pan, L. W., Dai, F. Q., Huang, J. N., Liu, S., Li, G. Q. Study of the effect of mineral matters on the thermal decomposition of Jimsar oil shale using TG-MS. Thermochim. Acta, 2016, 627‒629, 31‒38.
https://doi.org/10.1016/j.tca.2016.01.013

30. Pan, L. W., Dai, F. Q., Huang, J. N., Liu, S., Zhang, F. H. Investigation of the gas flow distribution and pressure drop in Xinjiang oil shale retort. Oil Shale, 2015, 32(2), 172‒185.
https://doi.org/10.3176/oil.2015.2.07

31. Pan, L. W., Dai, F. Q., Huang, J. N., Liu, S., Zhang, F. H. Study of a new gas inlet structure designed for Xinjiang oil shale retort. Oil Shale, 2016, 33(1), 69‒79. 
https://doi.org/10.3176/oil.2016.1.06

32. Ying, W. F. Mathematical & Physical Simulation of COREX Pre-Reduction Shaft Furnace. Northeastern University, Shengyang, 2013 (in Chinese).

33. Zhou, H., Zou, Z. S., Luo, Z. G., Zhang, T., You, Y., Li, H. F. Analyses of solid flow in latest design COREX shaft furnace by physical simulation. Ironmak. Steelmak., 2015, 42(3), 209‒216.
https://doi.org/10.1179/1743281214Y.0000000222

34. Zhang, X. S., Zou, Z. S., Luo, Z. G. Influence of CGD structure on burden descending behavior in COREX shaft furnace. Metall. Res. Technol., 2019, 116(3), 304.
https://doi.org/10.1051/metal/2018089

Back to Issue