eesti teaduste
akadeemia kirjastus
SINCE 1984
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2021): 1.442
Current status of co-pyrolysis of oil shale and biomass; pp. 228–263
PDF | 10.3176/oil.2021.3.04

Alejandro Lyons Cerón, Alar Konist, Heidi Lees, Oliver Järvik

The use of biomass (BM) and oil shale (OS) blends for the production of cleaner and improved fuels and chemicals through co-pyrolysis has recently attracted attention. The potential benefits, synergetic effects, interactions and promotion and inhibition effects of co-pyrolysis of BM and OS are reviewed and analyzed in this article based on an overview of various recent studies of co-pyrolysis, including the experimental and operational parameters and the yield and composition of the products. The effects of co-pyrolysis on different feedstock blends are discussed to guide future research on BM and OS co-pyrolysis. The effects of different pyrolysis parameters that can improve the pyrolysis process and quality of products are also reviewed. These parameters include CO2 and steam atmospheres, heating rate, reaction temperature and particle size. Overall, in most cases reviewed, co-pyrolysis can enhance the yields of bio-oils, producer gas and chars as well as improve their properties while reducing the environmental effects of fossil fuels.


1. Sikarwar, V. S., Zhao, M., Clough, P., Yao, J., Zhong, X., Memon, M. Z., Shah, N., Anthony, E. J., Fennell, P. S. An overview of advances in biomass gasification. Energy Environ. Sci., 2016, 9, 2939–2977.

2. Rogelj, J., Den Elzen, M., Höhne, N., Fransen, T., Fekete, H., Winkler, H., Schaeffer, R., Sha, F. Riahi, K., Meinshausen, M. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature, 2016, 534, 631–639.

3. Powell, T. W. R., Lenton, T. M. Future carbon dioxide removal via biomass energy constrained by agricultural efficiency and dietary trends. Energy Environ. Sci., 2012, 5, 8116–8133.

4. Wang, Q., Ma, Y., Li, S., Hou, J., Shi, J. Exergetic life cycle assessment of Fushun-type shale oil production process. Energy Convers. Manag., 2018, 164, 508–517.

5. Zhang, L., Xu, C. (Charles), Champagne, P. Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers. Manag., 2010, 51(5), 969–982.

6. Uddin, M. N., Techato, K., Taweekun, J., Rahman, M. M., Rasul, M. G., Mahlia, T. M. I., Ashrafur, S. M. An overview of recent developments in biomass pyrolysis technologies. Energies, 2018, 11(11), 3115.

7. Akhtar, A., Krepl, V., Ivanova, T. A combined overview of combustion, pyrolysis, and gasification of biomass. Energy Fuels, 2018, 32(7), 7294–7318.

8. Foltin, J. P., Lisboa, A. C. L., De Klerk, A. Oil shale pyrolysis: conversion dependence of kinetic parameters. Energy Fuels, 2017, 31(7), 6766–6776.

9. Han, X., Kulaots, I., Jiang, X., Suuberg, E. M. Review of oil shale semicoke and its combustion utilization. Fuel, 2014, 126, 143–161.

10. Liu, Q. Q., Han, X. X., Li, Q. Y., Huang, Y. R., Jiang, X. M. TG-DSC analysis of pyrolysis process of two Chinese oil shales. J. Therm. Anal. Calorim., 2014, 116, 511–517.

11. Oja ,V., Suuberg, E. M. Oil shale processing, chemistry and technology. In: Encyclopedia of Sustainability Science and Technology (Meyers, R. A., ed.). Springer, New York, 2012, 7457–7491.

12. Le Doan, T. V., Bostrom, N. W., Burnham, A. K., Kleinberg, R. L., Pomerantz, A. E., Allix, P. Green River oil shale pyrolysis: semi-open conditions. Energy Fuels, 2013, 27(11), 6447–6459.

13. Hillier, J. L., Fletcher, T. H. Pyrolysis kinetics of a Green River oil shale using a pressurized TGA. Energy Fuels, 2011, 25(1), 232–239.

14. Akalin, E., Kim, Y. M., Alper, K., Oja, V., Tekin, K., Durukan, I., Siddiqui, M. Z., Karagöz, S. Co-hydrothermal liquefaction of lignocellulosic biomass with Kukersite oil shale. Energy Fuels, 2019, 33(8), 7424–7435.

15. U.S. Energy Information Administration. Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States, Washington, DC, 2013.

16. Knaus, E., Killen, J., Biglarbigi, K., Crawford, P. An overview of oil shale resources. In: Oil Shale: A Solution to the Liquid Fuel Dilemma(Ogunsola, O. I., Hartstein, A. M., Ogunsola, O., eds.), ACS Symp. Ser., 2010, 1032, 3–20.

17. Boak, J. Shale-hosted hydrocarbons and hydraulic fracturing. In: Future Energy (Second Edition): Improved, Sustainable and Clean Options for Our Planet, 2014, 117–143.

18. Speight, J. G. Origin and properties of oil shale. In: Shale Oil Production Processes. Gulf Professional Publishing, 2012, 1–33.

19. Kiliç, M., Pütün, A. E., Uzun, B. B., Pütün, E. Converting of oil shale and biomass into liquid hydrocarbons via pyrolysis. Energy Convers. Manag., 2014, 78, 461–467.

20. Nazzal, J. M.. The influence of grain size on the products yield and shale oil composition from the pyrolysis of Sultani oil shale. Energy Convers. Manag., 2008, 49(11), 3278–3286.

21. Frau, C., Ferrara, F., Orsini, A., Pettinau, A. Characterization of several kinds of coal and biomass for pyrolysis and gasification. Fuel, 2015, 152, 138–145.

22. Akhtar, J., Amin, N. A. S. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew. Sust. Energ. Rev., 2011, 15(3), 1615–1624. 

23. Mehmood, M. A., Ye, G., Luo, H., Liu, C., Malik, S., Afzal, I., Xu, J., Ahmad, M. S. Pyrolysis and kinetic analyses of Camel grass (Cymbopogon schoenanthus) for bioenergy. Bioresour. Technol., 2017, 228, 18–24.

24. Erkiaga, A., Lopez, G., Amutio, M., Bilbao, J., Olazar, M. Influence of operating conditions on the steam gasification of biomass in a conical spouted bed reactor. Chem. Eng. J., 2014, 237, 259–267.

25. Van de Velden, M., Baeyens, J., Brems, A., Janssens, B., Dewil, R. Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renew. Energ., 2010, 35(1), 232–242.

26. Strizhakova, Yu. A., Usova, T. V. Current trends in the pyrolysis of oil shale: A review. Solid Fuel Chem., 2008, 42, 197–201.

27. Wang, X., Deng, S., Tan, H., Adeosun, A., Vujanović, M., Yang, F., Duić, N. Synergetic effect of sewage sludge and biomass co-pyrolysis: A combined study in thermogravimetric analyzer and a fixed bed reactor. Energy Convers. Manag., 2016, 118, 399–405.

28. Singh, R. K., Ruj, B. Time and temperature depended fuel gas generation from pyrolysis of real world municipal plastic waste. Fuel, 2016, 174, 164–171.

29. Duman, G., Yanik, J. Two-step steam pyrolysis of biomass for hydrogen production. Int. J. Hydrogen Energy, 2017, 42(27), 17000–17008.

30. Lan, W., Chen, G., Zhu, X., Wang, X., Xu, B. Progress in techniques of biomass conversion into syngas. J. Energy Inst., 2015, 88(2), 151–156.

31. Wu, C., Liu, R. Carbon deposition behavior in steam reforming of bio-oil model compound for hydrogen production. Int. J. Hydrogen Energy, 2010, 35(14), 7386–7398.

32. Jin, Q., Wang X., Li, S., Mikulčić, H., Bešenić, T., Deng, S., Vujanović, M., Tan, H., Kumfer, B. M. Synergistic effects during co-pyrolysis of biomass and plastic: Gas, tar, soot, char products and thermogravimetric study. J. Energy Inst., 2019, 92(1), 108–117.

33. Demirbaş, A. Recovery of chemicals and gasoline-range fuels from plastic wastes via pyrolysis. Energ. Source., 2005, 27(14), 1313–1319.

34. Bridgwater, A. V. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenerg., 2012, 38, 68–94.

35. Ahmed, N., Zeeshan, M., Iqbal, N., Farooq, M. Z., Shah, S. A. Investigation on bio-oil yield and quality with scrap tire addition in sugarcane bagasse pyrolysis. J. Clean. Prod., 2018, 196, 927–934.

36. Moghtaderi, B., Meesri, C., Wall, T. F. Pyrolytic characteristics of blended coal and woody biomass. Fuel, 2004, 83(6), 745–750.

37. ÖzsinG., PütünAETGA/MS/FT-IR study for kinetic evaluation and evolved gas analysis of a biomass/PVC co-pyrolysis processEnergy Convers. Manag., 2019, 182, 143–153.

38. Kong, L., Li, G., Jin, L., Hu, H. Pyrolysis behaviors of two coal-related model compounds on a fixed-bed reactor. Fuel Process. Technol., 2015, 129, 113–119.

39. Luik, H., Luik, L., Tiikma, L., Vink, N. Parallels between slow pyrolysis of Estonian oil shale and forest biomass residues. J. Anal. Appl. Pyrolysis, 2007, 79(1–2), 205–209.

40. Urov, K., Sumberg, A. Characteristic of oil shales and shale-like rocks of known deposits and outcrops. Monograph. Oil Shale, 1999, 16(3S), 1–64.

41. Bai, F., Sun, Y., Liu, Y., Li, Q., Guo, M. Thermal and kinetic characteristics of pyrolysis and combustion of three oil shales. Energy Convers. Manag., 2015, 97, 374–381.

42. Akash, B. A., Jaber, J. O. Characterization of shale oil as compared to crude oil and some refined petroleum products. Energ. Source., 2003, 25(12), 1171–1182.

43. Gavrilova, O., Vilu, R., Vallner, L. A life cycle environmental impact assessment of oil shale produced and consumed in Estonia. Resour. Conserv. Recy., 2010, 55(2), 232–245.

44. Ristic, N. D., Djokic, M. R., Konist, A., Van Geem, K. M., Marin, G. B. Quantitative compositional analysis of Estonian shale oil using comprehensive two dimensional gas chromatography. Fuel Process. Technol., 2017, 167, 241–249.

45. Demirbas, M. F., Balat, M. Recent advances on the production and utilization trends of bio-fuels: A global perspective. Energy Convers. Manag., 2006, 47(15–16), 2371–2381.

46. Li, S., Chen, X., Liu, A., Wang, L., Yu, G. Study on co-pyrolysis characteristics of rice straw and Shenfu bituminous coal blends in a fixed bed reactor. Bioresour. Technol., 2014, 155, 252–257.

47. Wang, Q., Li, X., Wang, K., Zhu, Y., Wang, S. Commercialization and challenges for the next generation of biofuels: Biomass fast pyrolysis. In: 2010 Asia-Pacific Power and Energy Engineering Conference, Chengdu, China, 28–31 March 2010, IEEE, 2010, 1–4.

48. Hu, X., Gholizadeh, M. Biomass pyrolysis: A review of the process development and challenges from initial researches up to the commercialisation stage. J. Energy Chem., 2019, 39, 109–143.

49. Sharifzadeh, M., Sadeqzadeh, M., Guo, M., Borhani, T. N., Murthy Konda, N. V. S. N., Garcia, M. C., Wang, L., Hallett, J., Shah, N. The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: Review of the state of art and future research directions. Prog. Energy Combust. Sci., 2019, 71, 1–80.

50. Wu, C., Liu, R. Carbon deposition behavior in steam reforming of bio-oil model compound for hydrogen production. Int. J. Hydrogen Energy, 2010,35(14), 7386–7398.

51. Veksha, A., McLaughlin, H., Layzell, D. B., Hill, J. M. Pyrolysis of wood to biochar: Increasing yield while maintaining microporosity. Bioresour. Technol., 2014, 153, 173–179.

52. Maguyon, M. C. C., Capareda, S. C. Evaluating the effects of temperature on pressurized pyrolysis of Nannochloropsis oculata based on products yields and characteristics. Energy Convers. Manag., 2013, 76, 764–773.

53. Wang, S., Luo, Z., Pyrolysis of Biomass, In: GREEN – Alternative Energy Resources, Walter de Gruyter GmbH, 2017, 268.

54. Demirbaş, A. Sustainable cofiring of biomass with coal. Energy Convers. Manag., 2003, 44(9), 1465–1479.

55. Armesto, L., Bahillo, A., Cabanillas, A., Veijonen, K., Otero, J., Plumed, A., Salvador, L. Co-combustion of coal and olive oil industry residues in fluidised bed. Fuel, 2003, 82(8), 993–1000.

56. Collot, A.-G., Zhuo, Y., Dugwell, D. R., Kandiyoti, R. Co-pyrolysis and co-gasification of coal and biomass in bench-scale fixed-bed and fluidized bed reactors. Fuel, 1999, 78(6), 667–679.

57. Chao, C. Y. H., Kwong, P. C. W., Wang, J. H., Cheung, C. W., Kendall, G. Co-firing coal with rice husk and bamboo and the impact on particulate matters and associated polycyclic aromatic hydrocarbon emissions. Bioresour. Technol., 2008, 99(1), 83–93.

58. Haykiri-Acma, H., Yaman, S. Synergy in devolatilization characteristics of lignite and hazelnut shell during co-pyrolysis. Fuel, 2007, 86(3), 373–380.

59. Haykiri-Acma, H., Yaman, S. Interaction between biomass and different rank coals during co-pyrolysis. Renew. Energ., 2010, 35(1), 288–292.

60. Li, S., Chen, X., Liu, A., Wang, L., Yu, G. Co-pyrolysis characteristic of biomass and bituminous coal. Bioresour. Technol., 2015, 179, 414–420.

61. Weiland, N. T., Means, N. C., Morreale, B. D. Product distributions from isothermal co-pyrolysis of coal and biomass. Fuel, 2012, 94, 563–570.

62. Li, S., Chen, X., Wang, L., Liu, A., Yu, G. Co-pyrolysis behaviors of saw dust and Shenfu coal in drop tube furnace and fixed bed reactor. Bioresour. Technol., 2013, 148, 24–29.

63. Cordero, T., Rodríguez-Mirasol, J., Pastrana, J., Rodríguez, J. J. Improved solid fuels from co-pyrolysis of a high-sulphur content coal and different lignocellulosic wastes. Fuel, 2004, 83(11–12), 1585–1590.

64. Wang, J., Yan, Q., Zhao, J., Wang, Z., Huang, J., Gao, S., Song, S., Fang, Y. Fast co-pyrolysis of coal and biomass in a fluidized-bed reactor. J. Therm. Anal. Calorim., 2014, 118, 1663–1673.

65. Vuthaluru, H. B. Thermal behaviour of coal/biomass blends during co-pyrolysis. Fuel Process. Technol., 2004, 85(2–3), 141–155.

66. Park, D. K., Kim, S. D., Lee, S. H., Lee, J. G. Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor. Bioresour. Technol., 2010, 101(15), 6151–6156.

67. Krerkkaiwan, S., Fushimi, C., Tsutsumi, A., Kuchonthara, P. Synergetic effect during co-pyrolysis/gasification of biomass and sub-bituminous coal. Fuel Process. Technol., 2013, 115, 11–18.

68. Quan, C., Xu, S., An, Y., Liu, X. Co-pyrolysis of biomass and coal blend by TG and in a free fall reactor. J. Therm. Anal. Calorim., 2014, 117, 817–823.

69. Soncini, R. M., Means, N. C., Weiland, N. T. Co-pyrolysis of low rank coals and biomass: Product distributions. Fuel, 2013, 112, 74–82.

70. Sonobe, T., Worasuwannarak, N., Pipatmanomai, S. Synergies in co-pyrolysis of Thai lignite and corncob. Fuel Process. Technol., 2008, 89(12), 1371–1378.

71. Sajdak, M., Muzyka, R., Hrabak, J., Słowik, K. Use of plastic waste as a fuel in the co-pyrolysis of biomass: Part III: Optimisation of the co-pyrolysis process. J. Anal. Appl. Pyrolysis, 2015, 112, 298–305.

72. Zhou, L., Wang, Y., Huang, Q., Cai, J. Thermogravimetric characteristics and kinetic of plastic and biomass blends co-pyrolysis. Fuel Process. Technol., 2006, 87(11), 963–969.

73. Brebu, M., Ucar, S., Vasile, C., Yanik, J. Co-pyrolysis of pine cone with synthetic polymers. Fuel, 2010, 89(8), 1911–1918.

74. Martínez, J. D., Veses, A., Mastral, A. M., Murillo, R., Navarro, M. V., Puy, N., Artigues, A., Bartroli, J., Garcia, T. Co-pyrolysis of biomass with waste tyres: Upgrading of liquid bio-fuel. Fuel Process. Technol., 2014, 119, 263–271.

75. Rofiqul Islam, M., Haniu, H., Rafiqul Alam Beg, M. Liquid fuels and chemicals from pyrolysis of motorcycle tire waste: Product yields, compositions and related properties. Fuel, 2008, 87(13–14), 3112–3122.

76. Ilkiliç, C., Aydin, H. Fuel production from waste vehicle tires by catalytic pyrolysis and its application in a diesel engine. Fuel Process. Technol., 2011, 92(5), 1129–1135.

77. Smith, K. M., Fowler, G. D., Pullket, S., Graham, N. J. D. Sewage sludge-based adsorbents: A review of their production, properties and use in water treatment applications. Water Res., 2009, 43(10), 2569–2594.

78. Shao, J., Yan, R., Chen, H., Wang, B., Lee, D. H., Liang, D. T. Pyrolysis characteristics and kinetics of sewage sludge by thermogravimetry Fourier transform infrared analysis. Energy Fuels, 2008, 22(1), 38–45.

79. Chen, B., Han, X., Tong, J., Mu, M., Jiang, X., Wang, S., Shen, J., Ye, X. Studies of fast co-pyrolysis of oil shale and wood in a bubbling fluidized bed. Energy Convers. Manag., 2020, 205, 112356.

80. Chen, B., Han, X., Mu, M., Jiang, X. Studies of the co-pyrolysis of oil shale and wheat straw. Energy Fuels, 2017, 31(7), 6941–6950.

81. Yanik, J., Seçim, P., Karakaya, S., Tiikma, L., Luik, H., Krasulina, J., Raik, P., Palu, V. Low-temperature pyrolysis and co-pyrolysis of Göynük oil shale and terebinth berries (Turkey) in an autoclave. Oil Shale, 2011, 28(4), 469–486.

82. Jiang, H., Deng, S., Chen, J., Zhang, L., Zhang, M., Li, J., Li, S., Li, J. Preliminary study on copyrolysis of spent mushroom substrate as biomass and Huadian oil shale. Energy Fuels, 2016, 30(8), 6342–6349.

83. Johannes, I., Tiikma, L., Luik, H. Synergy in co-pyrolysis of oil shale and pine sawdust in autoclaves. J. Anal. Appl. Pyrolysis, 2013, 104, 341–352.

84. Dai, M., Yu, Z., Fang, S., Ma, X. Behaviors, product characteristics and kinetics of catalytic co-pyrolysis spirulina and oil shale. Energy Convers. Manag., 2019, 192, 1–10.

85. Hu, Z., Ma, X., Li, L. The synergistic effect of co-pyrolysis of oil shale and microalgae to produce syngas. J. Energy Inst., 2016, 89(3), 447–455.

86. Bai, J., Chen, X., Shao, J., Jia, C., Wang, Q. Study of breakage of main covalent bonds during co-pyrolysis of oil shale and alkaline lignin by TG-FTIR integrated analysis. J. Energy Inst., 2019, 92(3), 512–522.

87. Ballice, L., Reimert, R. Temperature-programmed co-pyrolysis of Turkish lignite with polypropylene. J. Anal. Appl. Pyrolysis, 2002, 65(2), 207–219.

88. Pinto, F., Costa, P., Gulyurtlu, I., Cabrita, I. Pyrolysis of plastic wastes. 1. Effect of plastic waste composition on product yield. J. Anal. Appl. Pyrolysis, 1999, 51(1–2), 39–55.

89. Al-Salem, S. M., Antelava, A., Constantinou, A., Manos, G., Dutta, A. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). J. Environ. Manage., 2017, 197, 177–198.

90. Kumagai, S., Yoshioka, T. Feedstock recycling via waste plastic pyrolysis. J. Jpn. Petrol. Inst., 2016, 59(6), 243–253.

91. Tiikma, L., Luik, H., Pryadka, N. Co-pyrolysis of Estonian shales with low-density polyethylene. Oil Shale, 2004, 21(1), 75–85.

92. Bozoglu, C., Karayildirim, T., Yanik, J. Utilization of products obtained from copyrolysis of oil shale and plastic. Oil Shale, 2009, 26(4), 475–490.

93. Aboulkas, A., Makayssi, T., Bilali, L., El Harfi, K., Nadifiyine, M., Benchanaa, M. Co-pyrolysis of oil shale and plastics: Influence of pyrolysis parameters on the product yields. Fuel Process. Technol., 2012, 96, 209–213.

94. Gersten, J., Fainberg, V., Garbar, A., Hetsroni, G., Shindler, Y. Utilization of waste polymers through one-stage low-temperature pyrolysis with oil shale. Fuel, 1999, 78(8), 987–990.

95. Ballice, L. Classification of volatile products evolved from the temperature-programmed co-pyrolysis of Turkish oil shales with atactic polypropylene (APP). Energy Fuels, 2001, 15(3), 659–665.

96. Aboulkas, A., El Harfi, K., Nadifiyine, M., Benchanaa, M. Pyrolysis behaviour and kinetics of Moroccan oil shale with polystyrene. Int. J. Energy Eng., 2011, 1(1), 1–11.

97. Hong, Q., Lei, Z., Lidong, Z., Hongpeng, L., Chunxia, J., Qing, W., Meiduan, C. Synergy analysis for co-pyrolysis of oil shale and shale oil sludge. Oil Shale, 2019, 36(3), 370–391.

98. Lappas, A. A., Dimitropoulos, V. S., Antonakou, E. V., Voutetakis, S. S., Vasalos, I. A. Design, construction, and operation of a transported fluid bed process development unit for biomass fast pyrolysis: Effect of pyrolysis temperature. Ind. Eng. Chem. Res., 2008, 47(3), 742–747.

99. Westerhof, R. J. M., Brilman, D. W. F., Van Swaaij, W. P. M., Kersten, S. R. A. Effect of temperature in fluidized bed fast pyrolysis of biomass: Oil quality assessment in test units. Ind. Eng. Chem. Res., 2010, 49(3), 1160–1168.

100.  Demirbas, A. Effect of temperature on pyrolysis products from biomass. Energ. Source. Part A, 2007, 29(4), 329–336.

101.  Garcia-Perez, M., Wang, X. S., Shen, J., Rhodes, M. J., Tian, F., Lee W. J., Wu, H., Li, C. Z. Fast pyrolysis of oil mallee woody biomass: Effect of temperature on the yield and quality of pyrolysis products. Ind. Eng. Chem. Res., 2008, 47(6), 1846–1854.

102.  Stummann, M. Z., Høj, M., Schandel, C. B., Hansen, A. B., Wiwel, P., Gabrielsen, J., Jensen, P. A., Jensen, A. D. Hydrogen assisted catalytic biomass pyrolysis. Effect of temperature and pressure. Biomass Bioenerg., 2018, 115, 97–107.

103.  Dufour, A., Girods, P., Masson, E., Rogaume, Y., Zoulalian, A. Synthesis gas production by biomass pyrolysis: Effect of reactor temperature on product distribution. Int. J. Hydrogen Energy, 2009, 34(4), 1726–1734.

104.  Zolghadr, A., Biernacki, J. J., Moore, R. J. Biomass fast pyrolysis using a novel microparticle microreactor approach: Effect of particles size, biomass type, and temperature. Energy Fuels, 2019, 33(2), 1146–1156.

105.  Gaston, K. R., Jarvis, M. W., Pepiot, P., Smith, K. M., Frederick, W. J., Nimlos, M. R. Biomass pyrolysis and gasification of varying particle sizes in a fluidized-bed reactor. Energy Fuels, 2011, 25(8), 3747–3757.

106.  Bennadji, H., Smith, K., Serapiglia, M. J., Fisher, E. M. Effect of particle size on low-temperature pyrolysis of woody biomass. Energy Fuels, 2014, 28(12), 7527–7537.

107.  Angin, D. Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresour. Technol., 2013, 128, 593–597.

108.  Klinger, J. L., Westover, T. L., Emerson, R. M., Williams, C. L., Hernandez, S., Monson, G. D., Ryan, J. C. Effect of biomass type, heating rate, and sample size on microwave-enhanced fast pyrolysis product yields and qualities. Appl. Energ., 2018, 228, 535–545.

109.  El-Sayed, S. A., Khairy, M. Effect of heating rate on the chemical kinetics of different biomass pyrolysis materials. Biofuels, 2015, 6(3–4), 157–170.

110.  Somerville, M., Deev, A. The effect of heating rate, particle size and gas flow on the yield of charcoal during the pyrolysis of radiata pine wood. Renew. Energ., 2020, 151, 419–425.

111.  El Harfi, K., Mokhlisse, A., Ben Chanâa, M. Yields and composition of oil obtained by isothermal pyrolysis of the Moroccan (Tarfaya) oil shales with steam or nitrogen as carrier gas. J. Anal. Appl. Pyrolysis, 2000, 56(2), 207–218.

112.  Kok, M. V., Senguler, I., Hufnagel, H., Sonel, N. Thermal and geochemical investigation of Seyitomer oil shale. Thermochim. Acta, 2001, 371(1–2), 111–119.

113.  Han, X. X., Jiang, X. M., Cui, Z. G. Studies of the effect of retorting factors on the yield of shale oil for a new comprehensive utilization technology of oil shale. Appl. Energy, 2009, 86(11), 2381–2385.

114.  Wang, Q., Sun, B., Hu, A., Bai, J., Li, S. Pyrolysis characteristics of Huadian oil shales. Oil Shale, 2007, 24(2), 147–157.

115.  Al-Ayed, O. S., Al-Harahsheh, A., Khaleel, A. M., Al-Harahsheh, M. Oil shale pyrolysis in fixed-bed retort with different heating rates. Oil Shale, 2009, 26(2), 139–147.

116.  Al-Ayed, O. S., Suliman, M. R., Rahman, N. A. Kinetic modeling of liquid generation from oil shale in fixed bed retort. Appl. Energy, 2010, 87(7), 2273–2277.

117.  Al-Harahsheh, A., Al-Ayed, O., Al-Harahsheh, M., Abu-El-Halawah, R. Heating rate effect on fractional yield and composition of oil retorted from El-lajjun oil shale. J. Anal. Appl. Pyrolysis, 2010, 89(2), 239–243.

118.  Tiwari, P., Deo, M. Compositional and kinetic analysis of oil shale pyrolysis using TGA-MS. Fuel, 2012, 94, 333–341.

119.  Tiwari, P., Deo, M. Detailed kinetic analysis of oil shale pyrolysis TGA data. AIChE J., 2012, 58(2), 505–515.

120.  Kök, M. V., Pamir, M. R. Comparative pyrolysis and combustion kinetics of oil shales. J. Anal. Appl. Pyrolysis, 2000, 55(2), 185–194.

121.  Torrente, M. C., Galán, M. A. Kinetics of the thermal decomposition of oil shale from Puertollano (Spain). Fuel, 2001, 80(3), 327–334.

122.  Jiang, X. M., Han, X. X., Cui, Z. G. New technology for the comprehensive utilization of Chinese oil shale resources. Energy, 2007, 32(5), 772–777.

123.  Syed, S., Qudaih, R., Talab, I., Janajreh, I. Kinetics of pyrolysis and combustion of oil shale sample from thermogravimetric data. Fuel, 2011, 904(4), 1631–1637.

124.  Lü, X., Sun, Y., Lu, T., Bai, F., Viljanen, M. An efficient and general analytical approach to modelling pyrolysis kinetics of oil shale. Fuel, 2014, 135, 182–187.

125.  Razvigorova, M., Budinova, T., Petrova, B., Tsyntsarski, B., Ekinci, E., Ferhat, M. F. Steam pyrolysis of Bulgarian oil shale kerogen. Oil Shale, 2008, 25(1), 27–36.

126.  Pach, M., Zanzi, R., Björnbom, E. Torrefied biomass a substitute for wood and charcoal. In: Proceedings of the 6th Asia-Pacific International Symposium on Combustion and Energy Utilization, Kuala Lumpur, Malaysia, May 20–22, 2002, 6.

127.  ÖnalEP., UzunBB., PütünAESteam pyrolysis of an industrial waste for bio-oil productionFuel Process. Technol., 2011, 92(5), 879–885.

128.  Trane, R., Dahl, S., Skjøth-Rasmussen, M. S., Jensen, A. D. Catalytic steam reforming of bio-oil. Int. J. Hydrogen Energy, 2012, 37(8), 6447–6472.

129.  Gil, M. V., Fermoso, J., Rubiera, F., Chen, D. H2 production by sorption enhanced steam reforming of biomass-derived bio-oil in a fluidized bed reactor: An assessment of the effect of operation variables using response surface methodology. Catal. Today, 2015, 242, 19–34.

130.  Xie, H., Yu, Q., Zuo, Z., Han, Z., Yao, X., Qin, Q. Hydrogen production via sorption-enhanced catalytic steam reforming of bio-oil. Int. J. Hydrogen Energy, 2016, 41(4), 2345–2353.

131.  Xie, H., Yu, Q., Yao, X., Duan, W., Zuo, Z., Qin, Q. Hydrogen production via steam reforming of bio-oil model compounds over supported nickel catalysts. J. Energy Chem., 2015, 24(3), 299–308.

132.  Pütün, A., Özbay, N., Pütün, E. Effect of steam on the pyrolysis of biomass. Energ. Source. Part A, 2006, 28(3), 253–262.

133.  Pütün, E., Ateş, F., Pütün, A. E. Catalytic pyrolysis of biomass in inert and steam atmospheres. Fuel, 2008, 87(6), 815–824.

134.  Sagehashi, M., Miyasaka, N., Shishido, H., Sakoda, A. Superheated steam pyrolysis of biomass elemental components and Sugi (Japanese cedar) for fuels and chemicals. Bioresour. Technol., 2006, 97(11), 1272–1283.

135.  Mullen, C. A., Boateng, A. A., Goldberg, N. M., Lima, I. M., Laird, D. A., Hicks, K. B. Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis. Biomass Bioenerg., 2010, 34(1), 67–74.

136.  Giudicianni, P., Cardone, G., Ragucci, R. Cellulose, hemicellulose and lignin slow steam pyrolysis: Thermal decomposition of biomass components mixtures. J. Anal. Appl. Pyrolysis, 2013, 100, 213–222.

137.  Umeki, K., Yamamoto, K., Namioka, T., Yoshikawa, K. High temperature steam-only gasification of woody biomass. Appl. Energy, 2010, 87, 791–798.

138.  Tennant, M. F., Mazyck, D. W. Steam-pyrolysis activation of wood char for superior odorant removal. Carbon, 2003, 41(12), 2195–2202.

139.  El Harfi, K., Mokhlisse, A., Ben Chanâa, M. Effect of water vapor on the pyrolysis of the Moroccan (Tarfaya) oil shale. J. Anal. Appl. Pyrolysis, 1999, 48(2), 65–76.

140.  Nazzal, J. M., Williams, P. T. Influence of temperature and steam on the products from the flash pyrolysis of Jordan oil shale. Int. J. Energ. Res., 2002, 26(14), 1207–1219.

141.  Kantarelis, E. Catalytic Steam Pyrolysis of Biomass for Production of Liquid Feedstock. Ph.D. Thesis. Royal Institute of Technology, Stockholm, 2014.

142.  Kantarelis, E., Liu, J., Yang, W., Blasiak, W. Sustainable valorization of bamboo via high-temperature steam pyrolysis for energy production and added value materials. Energy Fuels, 2010, 24(11), 6142–6150.

143.  Kantarelis, E., Yang, W., Blasiak, W. Production of liquid feedstock from biomass via steam pyrolysis in a fluidized bed reactor. Energy Fuels, 2013, 27(8), 4748–4759.

144.  Özbay, N., Uzun B. B., Varol, E. A., Pütün, A. E. Comparative analysis of pyrolysis oils and its subfractions under different atmospheric conditionsFuel Process. Technol., 2006, 87(11), 1013–1019.

145.  Özbay, N., Pütün, A. E. Characterization of chars from steam pyrolysis of apricot pulpEnerg. Source. Part A, 2011, 33(16), 1504–1513.

146.  Hapazari, I., Ntuli, V., Parawira, W. Evaluation of single-step steam pyrolysis-activated carbons from Lesotho agro-forestry residues. Tanz. J. Sci., 2011, 37, 120–128.

147.  Turner, J., Lu, H., White, I., King, J. C., Phillips, T., Hosking, J. S., Bracegirdle, T. J., Marshall, G. J., Mulvaney, R., Deb, P. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature, 2016, 535, 411–415.

148.  Jindarom, C., Meeyoo, V., Rirksomboon, T., Rangsunvigit, P. Thermochemical decomposition of sewage sludge in CO2 and Natmosphere. Chemosphere, 2007, 67(8), 1477–1484.

149.  Lee, J., Yang , X., Cho, S. H., Kim, J. K., Lee, S. S., Tsang, D. C. W., Ok, Y. S., Kwon, E. E. Pyrolysis process of agricultural waste using CO2 for waste management, energy recovery, and biochar fabrication. Appl. Energy, 2017, 185, Part 1, 214–222.

150.  Messenböck, R. C., Dugwell, D. R., Kandiyoti, R. CO2 and steam-gasification in a high-pressure wire-mesh reactor: The reactivity of Daw Mill coal and combustion reactivity of its chars. Fuel, 1999, 78(7), 781–793.

151.  Naredi, P., Pisupati, S. Effect of CO2 during coal pyrolysis and char burnout in oxy-coal combustion. Energy Fuels, 2011, 25, 2452–2459.

152.  Lahijani, P., Zainal, Z. A., Mohammadi, M., Mohamed, A. R. Conversion of the greenhouse gas CO2 to the fuel gas CO via the Boudouard reaction: A review. Renew. Sustain. Energy Rev., 2015, 41, 615–632.

153.  Prabowo, B., Umeki, K., Yan, M., Nakamura, M. R., Castaldi, M. J., Yoshikawa, K. CO2-steam mixture for direct and indirect gasification of rice straw in a downdraft gasifier: Laboratory-scale experiments and performance prediction. Appl. Energy, 2014, 113, 670–679.

154.  Cho, S. H., Lee, J., Kim, K. H., Jeon, Y. J., Kwon, E. E. Carbon dioxide assisted co-pyrolysis of coal and ligno-cellulosic biomass. Energy Convers. Manag., 2016, 118, 243–252.

155.  Lee, J., Yang, X., Song, H., Ok, Y. S., Kwon, E. E. Effects of carbon dioxide on pyrolysis of peat. Energy, 2017, 120, 929–936.

156.  Guizani, C., Escudero Sanz, F. J., Salvador, S. Effects of CO2 on biomass fast pyrolysis: Reaction rate, gas yields and char reactive properties. Fuel, 2014, 116, 310–320.

157.  Zhang, H., Xiao, R., Wang, D., He, G., Shao, S., Zhang, J., Zhong, Z. Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and H2atmospheres. Bioresour. Technol., 2011, 102(5), 4258–4264.

158.  Xie, F. F., Wang, Z., Lin, W. G., Song, W. L. Study on thermal conversion of Huadian oil shale under N2 and CO2 atmospheres. Oil Shale, 2010, 27(4), 309–320.

159.  Ye, J., Xiao, J., Huo, X., Gao, Y., Hao, J., Song, M. Effect of CO2 atmosphere on biomass pyrolysis and in-line catalytic reforming. Int. J. Energ. Res., 2020, 44(11), 8936–8950.

160.  Farrow, T. S., Sun, C., Snape, C. E. Impact of CO2 on biomass pyrolysis, nitrogen partitioning, and char combustion in a drop tube furnace. J. Anal. Appl. Pyrolysis, 2015, 113, 323–331.

161.  Lee, J., Oh, J. I., Ok, Y. S., Kwon, E. E. Study on susceptibility of CO2-assisted pyrolysis of various biomass to CO2Energy, 2017, 137, 510–517.

162.  Tang, L., Yan, Y., Meng, Y., Wang, J., Jiang, P., Pang, C. H., Wu, T. CO2 gasification and pyrolysis reactivity evaluation of oil shale. Energy Procedia, 2019, 158, 1694–1699.

163.  Yaǧmur, S., Durusoy, T. Kinetics of the pyrolysis and combustion of Göynük oil shale. J. Therm. Anal. Calorim., 2006, 86(2), 479–482.

164.  Nazzal, J. M. Influence of heating rate on the pyrolysis of Jordan oil shale. J. Anal. Appl. Pyrolysis, 2002, 62(2), 225–238.

165.  Olivella, M. À., De Las Heras, F. X. C. Evaluation of linear kinetic methods from pyrolysis data of Spanish oil shales and coals. Oil Shale, 2008, 25(2), 227–245.

166.  Gersten, J., Fainberg, V., Hetsroni, G., Shindler, Y. Kinetic study of the thermal decomposition of polypropylene, oil shale, and their mixture. Fuel, 2000, 79(13), 1679–1686.

167.  Johannes, I., Kruusement, K., Veski, R. Evaluation of oil potential and pyrolysis kinetics of renewable fuel and shale samples by Rock-Eval analyzer. J. Anal. Appl. Pyrolysis, 2007, 79(1–2), 183–190.

168.  Qian, J., Wang, J., Li, S. Oil shale development in China. Oil Shale, 2003, 20(3S), 356–359.

169.  Li, S., Yue, C. Study of pyrolysis kinetics of oil shale. Fuel, 2003, 82(3), 337–342.

170.  Williams, P. T., Ahmad, N. Investigation of oil-shale pyrolysis processing conditions using thermogravimetric analysis. Appl. Energy, 2000, 66(2), 113–133.

171.  Kök, M. V. Evaluation of Turkish oil shales - Thermal analysis approach. Oil Shale, 2001, 18(2), 131–138.

172.  Kök, M. V., Pamir, R. Pyrolysis kinetics of oil shales determined by DSC and TG/DTG. Oil Shale, 2003, 20(1), 57–68.

173.  Kök, M. V., Guner, G., Bagci, S. Combustion kinetics of oil shales by reaction cell experiments. Oil Shale, 2008, 25(1), 5–16.

174.  Na, J. G., Im, C. H., Chung, S. H., Lee, K. B. Effect of oil shale retorting temperature on shale oil yield and properties. Fuel, 2012, 95, 131–135.

175.  Khalil, A. M. Oil shale pyrolysis and effect of particle size on the composition of shale oil. Oil Shale, 2013, 30(2), 136–146.

176.  Wang, S., Liu, J., Jiang, X., Han, X., Tong, J. Effect of heating rate on products yield and characteristics of non-condensable gases and shale oil obtained by retorting Dachengzi oil shale. Oil Shale, 2013, 30(1), 27–47.

177.  Jaber, J. O., Probert, S. D., Williams, P. T. Evaluation of oil yield from Jordanian oil shales. Energy, 1999, 24(9), 761–781.

178.  Olukcu, N., Yanik, J., Saglam, M., Yuksel, M. Liquefaction of beypazari oil shale by pyrolysis. J. Anal. Appl. Pyrolysis, 2002, 64(1), 29–41.


Back to Issue