eesti teaduste
akadeemia kirjastus
SINCE 1984
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2020): 0.934

3-D CFD simulation of oil shale drying in fluidized bed and experimental verification; pp. 334–356

Full article in PDF format | 10.3176/oil.2020.4.06

Ruitong Dong, Liangzhi Xia, Haonan Wang, Dongsheng Jiao


Fluidized bed drying is an economical and high-efficiency deep pre-dehydration technology for oil shale. The mature fluidized bed drying technology, which intensifies the retorting process, was applied to oil shale particles of high moisture content. The main objective of this paper was to explore the 3-D computational fluid dynamics (CFD) numerical simulation and experimental verification of oil shale particles drying in a fluidized bed. The Eulerian modeling incorporating the kinetic theory for granular particles coupled with the k-ε turbulence model was developed. The modeling utilized the drying model with a user-defined functions (UDF) for the simulation. The effects of the specularity coefficient and the particle-particle coefficient of restitution (COR) on oil shale particles hydrodynamics, and of the flue gas temperature and velocity on their drying characteristics were studied. It was shown that with a decrease in the specularity coefficient, the particle velocity increased, while the flue gas velocity, pressure drop and wall shear stress decreased. Decreasing the normal COR tended to increase the axial solid velocity fluctuations and the number of the bubbles formed. The predicted pressure drop and moisture content agreed reasonably with the experimental results at COR = 0.9 and the specularity coefficient = 0.2. The temperature and velocity of flue gas were shown to have a great influence on the drying characteristics of oil shale.


1. Dyni, J. R. Geology and resources of some world oil-shale deposits. Oil Shale, 2003, 20(3), 193–252.

2. Wang, Q., Bo, J. R., Sun, B. Z., Sun, J. Strategy of Huadian oil shale comprehensive utilization. Oil Shale, 2005, 22(3), 305–315.

3. Han, X., Kulaots, I., Jiang, X., Suuberg, E. M. Review of oil shale semicoke and its combustion utilization. Fuel, 2014, 126, 143–161.

4. Liu, Z. J., Dong, Q. S., Ye, S. Q. The situation of oil shale resources in China. Journal of Jilin University (Earth Science Edition), 2006, 36(6), 869–876 (in Chinese with English abstract).

5. Li, X., Zhou, H., Wang, Y., Qian, Y., Yang, S. Thermoeconomic analysis of oil shale retorting processes with gas or solid heat carrier. Energy, 2015, 87, 605–614.

6. Aboulkas, A., El Harfi, K., El Bouadili, A., Nadifiyine, M., Benchanaa, M. Study on the pyrolysis of Moroccan oil shale with poly (ethylene terephthalate). J. Therm. Anal. Calorim., 2010, 100(1), 323–330.

7. Al-Harahsheh, M., Al-Ayed, O., Robinson, J., Kingman, S., Al-Harahsheh, A., Tarawneh, K., Saeid, A., Barranco, R. Effect of demineralization and heating rate on the pyrolysis kinetics of Jordanian oil shales. Fuel. Process. Technol., 2011, 92(9), 1805–1811.

8. Janković, B. The kinetic modeling of the non-isothermal pyrolysis of Brazilian oil shale: Application of the Weibull probability mixture model. J. Petrol. Sci.Eng., 2013, 111, 25–36.

9. Lv, W., Li, S., Han, Q., Zhao, Y., Wu, H. Study of the drying process of ginger (Zingiber officinale Roscoe) slices in microwave fluidized bed dryer. DryTechnol., 2016, 34(14), 1690–1699.

10. Naz, M. Y., Sulaiman, S. A., Bou-Rabee, M. A. Particle tracking velocimetry investigations on density dependent velocity vector profiles of a swirling fluidized bed. Dry. Technol., 2017, 35(2), 193–202.

11. Bennamoun, L., Chen, Z., Afzal, M. T. Microwave drying of wastewater sludge: Experimental and modeling study. Dry. Technol., 2016, 34(2), 235–243.

12. Verma, V., Deen, N. G., Padding, J. T., Kuipers, J. A. M. Two-fluid modeling of three-dimensional cylindrical gas–solid fluidized beds using the kinetic theory of granular flow. Chem. Eng. Sci., 2013, 102, 227–245.

13. Huilin, L., Yurong, H., Gidaspow, D. Hydrodynamic modelling of binary mixture in a gas bubbling fluidized bed using the kinetic theory of granular flow. Chem. Eng. Sci., 2003, 58(7), 1197–1205.

14. Loha, C., Chattopadhyay, H., Chatterjee, P. K. Effect of coefficient of restitution in Euler-Euler CFD simulation of fluidized-bed hydrodynamics. Particuology, 2014, 15, 170–177.

15. Fede, P., Simonin, O., Ingram, A. 3D numerical simulation of a lab-scale pressurized dense fluidized bed focussing on the effect of the particle-particle restitution coefficient and particle–wall boundary conditions. Chem. Eng. Sci., 2016, 142, 215–235.

16. Loha, C., Chattopadhyay, H., Chatterjee, P. Euler-Euler CFD modeling of fluidized bed: Influence of specularity coefficient on hydrodynamic behavior. Particuology, 2013, 11(6), 673–680.

17. Zhong, H., Gao, J., Xu, C., Lan, X. CFD modeling the hydrodynamics of binary particle mixtures in bubbling fluidized beds: Effect of wall boundary condition. Powder Technol., 2012, 230, 232–240.

18. Lan, X., Xu, C., Gao, J., Al-Dahhan, M. Influence of solid-phase wall boundary condition on CFD simulation of spouted beds. Chem. Eng. Sci., 2012, 69(1), 419–430.

19. Assari, M. R., Tabrizi, H. B., Saffar-Avval, M. Numerical simulation of fluid bed drying based on two-fluid model and experimental validation. Appl.Therm. Eng., 2007, 27(2–3) 422–429.

20. Ranjbaran, M., Zare, D. CFD modeling of microwave-assisted fluidized bed drying of moist particles using two-fluid model. Dry. Technol., 2012, 30(4), 362–376.

21. Jamaleddine, T. J., Ray, M. B. Drying of sludge in a pneumatic dryer using computational fluid dynamics. Dry. Technol., 2011, 29(3), 308–322.

22. Gidaspow, D., Bezburuah, R., Ding, J. Hydrodynamics of circulating fluidized beds: Kinetic theory approach. Proceedings of the 7th International Conference on Fluidization, Gold Coast (Australia), 3–8 May 1992.

23. Johnson, P. C., Jackson, R. Frictional–collisional constitutive relations for granular materials with application to plane shearing. JFluid Mech., 1987, 176, 67–93.

24. Paláncz, B. A mathematical model for continuous fluidized bed drying. Chem. Eng. Sci., 1983, 38(7), 1045–1059.

25. Xia, L., Zhang, H., Wang, B., Yu, C., Fan, X. Experimental and numerical analysis of oil shale drying in fluidized bed. Dry. Technol., 2017, 35(7), 802–814.

26. Chang, J., Wu, Z., Wang, X., Liu, W. Two- and three-dimensional hydrodynamic modeling of a pseudo-2D turbulent fluidized bed with Geldart B particle. Powder Technol., 2019, 351, 159–168.

27. Abdelmotalib, H., Youssef, M. A. M., Hassan, A. A., Youn, S. B., Im, I.-T. Influence of the specularity coefficient on hydrodynamics and heat transfer in a conical fluidized bed combustor. Int. Commun. Heat. Mass., 2016, 75, 169–176.

28. Hu, C., Luo, K., Wang, S., Junjie, L., Fan, J. The effects of collisional parameters on the hydrodynamics and heat transfer in spouted bed: A CFD-DEM study. Powder Technol., 2019, 353, 132–144.

29. Nabizadeh, A., Hassanzadeh, H., Asadieraghi, M., Hassanpour, A., Moradi, D., Moraveji, M. K., Namin, M. H. A parametric study of the drying process of polypropylene particles in a pilot-scale fluidized bed dryer using Computational Fluid Dynamics. ChemEng. ResDes., 2020, 156, 13–22.

Back to Issue