ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2020): 0.934

Vapor pressures of narrow gasoline fractions of oil from industrial retorting of Kukersite oil shale; pp. 288–303

Full article in PDF format | 10.3176/oil.2020.4.03

Authors
Parsa Mozaffari, Zachariah Steven Baird, Madis Listak, Vahur Oja

Abstract

This study presents vapor pressure data for narrow boiling range fractions, viewed as pseudocomponents, prepared by rectification from a wide Kukersite oil shale retort oil gasoline fraction, a straight-run fraction with a boiling range from about 40 to about 200 °C. This technical gasoline fraction was produced in a commercial solid heat carrier retort. Vapor pressures were measured according to the ASTM D6378 standard with a commercial ERAVAP vapor pressure tester using a vapor-liquid ratio of 4:1. The vapor pressure curves were derived by fitting the experimental data using the integrated form of the Clausius-Clapeyron equation. From this equation heats of vaporization and atmospheric boiling points were calculated. The suitability of three easy-to-use conventional oil vapor pressure correlations for predicting the vapor pressure of narrow boiling range fractions of Kukersite oil shale retort oil gasoline was evaluated.


References

1. Riazi, M. R., Al-Enezi, G. A. Modelling of the rate of oil spill disappearance from seawater for Kuwaiti crude and its products. Chem. Eng. J., 1999, 73(2), 161–172.
https://doi.org/10.1016/S1385-8947(99)00034-0

2. Raj, P. K. A flammability (risk) index for use in transportation of flammable liquids. J. Loss Prevent. Proc., 2016, 44, 755–763.
https://doi.org/10.1016/j.jlp.2016.10.001

3. Pichler, H., Lutz, J. Why crude oil vapor pressure should be tested prior to rail transport. Adv. Petrol. Explor. Dev., 2014, 7(2), 58–63.

4. Andersen, V. F., Anderson, J. E., Wallington, T. J., Mueller, S. A., Nielsen, O. J. Vapor pressures of alcohol−gasoline blends. Energ. Fuel., 2010, 24(6), 3647–3654.
https://doi.org/10.1021/ef100254w

5. Riazi, M. R. Characterization and Properties of Petroleum Fractions. ASTM International, 2005.
https://doi.org/10.1520/MNL50_1ST-EB

6. Tsonopoulos, C., Heidman, J. L., Hwang, S.-C. Thermodynamic and Transport Properties of Coal Liquids. Wiley, 1986.

7. Nji, G. N., Svrcek, W. Y., Yarranton, H. W., Satyro, M. A. Characterization of heavy oils and bitumens. 1. Vapor pressure and critical constants prediction methods for heavy hydrocarbons. Energ. Fuel., 2008, 22(1), 455–462.
https://doi.org/10.1021/ef700488b

8. Oja, V., Suuberg, E. M. Oil shale processing, chemistry and technology. In: Encyclopedia of Sustainability Science and Technology (Meyers, R. A., ed.). Springer, 2012, 7457−7491.
https://doi.org/10.1007/978-1-4419-0851-3_102

9. Lee, S. Oil Shale Technology. CRC Press, 1990.

10. Ge, X., Wang, S., Jiang, X. Catalytic effects of shale ash with different particle sizes on characteristics of gas evolution from retorting oil shale. J. Therm. Anal. Calorim., 2019, 138, 1527−1540.
https://doi.org/10.1007/s10973-019-08290-w

11. Yu, X., Luo, Z., Li, H., Zhang, J., Gan, D. The diffusion and separation of the oil shale in the compound dry beneficiation bed. Powder Technol., 2019, 355, 72−82.
https://doi.org/10.1016/j.powtec.2019.07.038

12. Qian, J. L., Yin, L., Wang, J. Q., Li, S. Y., Han, F., He, Y. G. Oil Shale – Petroleum Alternative. China Petrochemical Press, Beijing, 2010.

13. Urov, K., Sumberg, A. Characteristics of oil shales and shale-like rocks of known deposits and outcrops. Monograph. Oil Shale, 1999, 16(3S), 1−64.

14. Akalin, E., Kim, Y. M., Alper, K., Oja, V., Tekin, K., Durukan, I., Siddiqui, M. Z., Karagöz, S. Co-hydrothermal liquefaction of lignocellulosic biomass with Kukersite oil shale. Energ. Fuel., 2019, 33(8), 7424−7435.
https://doi.org/10.1021/acs.energyfuels.9b01473

15. Oja, V. Examination of molecular weight distributions of primary pyrolysis oils from three different oil shales via direct pyrolysis Field Ionization Spectrometry. Fuel, 2015, 159, 759−765.
https://doi.org/10.1016/j.fuel.2015.07.041

16. Siitsman, C., Oja, V. Application of a DSC based vapor pressure method for examining the extent of ideality in associating binary mixtures with narrow boiling range oil cuts as a mixture component. Thermochim. Acta, 2016, 637, 24−30.
https://doi.org/10.1016/j.tca.2016.05.011

17. Akash, B. A., Characterization of shale oil as compared to crude oil and some refined petroleum products. Energ. Source., 2003, 25(12), 1171–1182.
https://doi.org/10.1080/00908310390233612

18. Kollerov, D. K. Physicochemical Properties of Oil Shale and Coal Liquids. Moscow, 1951 (in Russian).

19. Oja, V., Rooleht, R., Baird, Z. S. Physical and thermodynamic properties of kukersite pyrolysis shale oil: literature review. Oil Shale, 2016, 33(2), 184–197.
https://doi.org/10.3176/oil.2016.2.06

20. Oja, V. Is it time to improve the status of oil shale science? Oil Shale, 2007, 24(2), 97−100.

21. Johannes, I., Luik, H., Bojesen-Koefoed, J. A., Tiikma, L., Vink, N., Luik, L. Effect of organic matter content and type of mineral matter on the oil yield from oil shales. Oil Shale, 2012, 29(3), 206–221.
https://doi.org/10.3176/oil.2012.3.02

22. Baird, Z. S., Uusi-Kyyny, P., Järvik, O., Oja, V., Alopaeus, V. Temperature and pressure dependence of a shale oil and derived thermodynamic properties. Ind. Eng. Chem. Res., 2018, 57(14), 5128–5135.
https://doi.org/10.1021/acs.iecr.7b05018

23. Baird, Z. S., Uusi-Kyyny, P., Oja, V., Alopaeus, V. Hydrogen solubility of shale oil containing polar phenolic compounds. Ind. Eng. Chem. Res., 2017, 56(30), 8738–8747.
https://doi.org/10.1021/acs.iecr.7b00966

24. Rannaveski, R., Listak, M., Oja, V. ASTM D86 distillation in the context of average boiling points as thermodynamic property of narrow boiling range oil fractions. Oil Shale, 2018, 35(3), 254–264.
https://doi.org/10.3176/oil.2018.3.05

25. Siitsman, C., Oja, V. Extension of the DSC method to measuring vapor pressures of narrow boiling range oil cuts. Thermochim. Acta, 2015, 622, 31–37.
https://doi.org/10.1016/j.tca.2015.04.011

26. Siitsman, C., Kamenev, I., Oja, V. Vapor pressure data of nicotine, anabasine and cotinine using differential scanning calorimetry. Thermochim. Acta, 2014, 595, 35–42.
https://doi.org/10.1016/j.tca.2014.08.033

27. Astra, H.-L., Oja, V. Vapour pressure data for 2-n-propylresorcinol, 4-ethyl-resorcinol and 4-hexylresorcinol near their normal boiling points measured by differential scanning calorimetry. J. Chem. Thermodyn., 2019, 134, 119–126.
https://doi.org/10.1016/j.jct.2019.03.008

28. Gray, J. A., Holder, G. D., Brady, C. J., Cunningham, J. R., Freeman, J. R., Wilson, G. M. Thermophysical properties of coal liquids. 3. Vapor pressure and heat of vaporization of narrow boiling coal liquid fractions. Ind. Eng. Chem. Proc. Des. Dev., 1985, 24(1), 97–107.
https://doi.org/10.1021/i200028a018

29. Oja, V., Suuberg, E. M. Development of a nonisothermal Knudsen effusion method and application to PAH and cellulose tar vapor pressure measurement. Anal. Chem., 1997, 69(22), 4619–4626.
https://doi.org/10.1021/ac970262s

30. Castellanos-Diaz, O., Schoeggl, F. F., Yarranton, H. W., Satyro, M. A. Measure-ment of heavy oil and bitumen vapor pressure for fluid characterization. Ind. Eng. Chem. Res., 2013, 52(8), 3027–3035.
https://doi.org/10.1021/ie303397y

31. Oja, V., Suuberg, E. M. Measurements of the vapor pressures of coal tars using the nonisothermal Knudsen effusion method. Energ. Fuel., 1998, 12(6), 1313–1321.
https://doi.org/10.1021/ef980093u

32. Spencer, W. F., Cliath, M. M. Measurement of pesticide vapor pressures. In: Residue Reviews (Gunther, F. A., Gunther, J. D., eds.), Springer, New York, 1983, 57–71.
https://doi.org/10.1007/978-1-4612-5462-1_6

33. Rannaveski, R., Oja, V. A new thermogravimetric application for determination of vapour pressure curve corresponding to average boiling points of oil fractions with narrow boiling ranges. Thermochim. Acta, 2020, 683, Article 178468.
https://doi.org/10.1016/j.tca.2019.178468

34. ASTM D6378-10. Standard Test Method for Determination of Vapor Pressure (VPX) of Petroleum Products, Hydrocarbons, and Hydrocarbon-Oxygenate Mixtures (Triple Expansion Method). ASTM International, West Conshohocken, PA, USA, 2016.

35. Van Nes, K., Van Westen, H. A. Aspects of the Constitution of Mineral Oils. Elsevier Publishing Company, 1951.

36. Maxwell, J. B., Bonnell, L. S. Vapor Pressure Charts for Petroleum Hydro-carbons. Esso Research and Engineering Company, 1955.

37. Maxwell, J. B., Bonnell, L. S. Derivation and precision of a new vapor pressure correlation for petroleum hydrocarbons. Ind. Eng. Chem., 1957, 49(7), 1187–1196.
https://doi.org/10.1021/ie50571a044

38. Wilson, G. M., Johnston, R. H., Hwang, S. C., Tsonopoulos, C. Volatility of coal liquids at high temperatures and pressures. Ind. Eng. Chem. Proc. Des. Dev., 1981, 20(1), 94–104.
https://doi.org/10.1021/i200012a015

39. Golubev, N. Solid oil shale heat carrier technology for oil shale retorting. Oil Shale, 2003, 20(3S), 324–332.

40. Elenurm, A., Oja, V., Tali, E., Tearo, E., Yanchilin, A. Thermal processing of dictyonema argillite and kukersite oil shale: Transformation and distribution of sulfur compounds in pilot-scale Galoter process. Oil Shale, 2008, 25(3), 328−334.
https://doi.org/10.3176/oil.2008.3.04

41. ASTM D2892-15. Standard Test Method for Distillation of Crude Petroleum (15-Theoretical Plate Column). ASTM International, West Conshohocken, PA, 2015.

42. Dreisbach, R. R. Physical Properties of Chemical Compounds. Advances in Chemistry Series, 15, Am. Chem. Soc., Washington, D. C, 1955.

43. Boublik, T., Fried, V., Hala, E. The Vapor Pressure of Pure Substances, 2nd revised Edition. Elsevier, Amsterdam, The Netherlands, 1984.

44. Zwolinski, B. J., Wilhoit, R. C. Handbook of Vapor Pressures and Heats of Vaporization of Hydrocarbons and Related Compounds. API-44, TRC Publication No. 101, Texas A&M University, College Station, TX, 1971.

45. Stephenson, R. M., Malanowski, S. Handbook of the Thermodynamics of Organic Compounds. Elsevier, New York, 1987.
https://doi.org/10.1007/978-94-009-3173-2

46. Ambrose, D., Ewing, M. B., Ghiassee, N. B., Sanchez Ochoa, J. S. The ebullio-metric method of vapour-pressure measurement: vapour pressures of benzene, hexafluorobenzene, and naphthalene. J. Chem. Thermodyn., 1990, 22(6), 589−605.
https://doi.org/10.1016/0021-9614(90)90151-F

47. Connolly, J. F., Kandalic, G. A. Saturation properties and liquid compressibilities for benzene and n-octane. J. Chem. Eng. Data, 1962, 7(1), 137−139.
https://doi.org/10.1021/je60012a039

48. Dean, J. A., Ed. Lange’s Handbook of Chemistry. 14th Edition, McGraw-Hill, New York, 1992.

49. Willingham, C. B., Taylor, W. J., Pignocco, J. M., Rossini, F. D. Vapor pressures and boiling points of some paraffin, alkylcyclopentane, alkylcyclohexane, and alkylbenzene hydrocarbons. J. Res. Natl. Bur. Stand., 1945, 35, 219−244.
https://doi.org/10.6028/jres.035.009


Back to Issue