eesti teaduste
akadeemia kirjastus
SINCE 1984
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2020): 0.934


Full article in PDF format |



In this work, the thermal behavior of Nong’an oil shale of China was investigated and its pyrolysate analyzed in order to provide optimal pyrolysis parameters for the oil shale in-situ pyrolysis pilot project. Through thermogravimetric analysis (TGA) it was noted that the main mass loss of oil shale was in the temperature range of 310–600 °C and the maximum mass loss temperature was 465 °C. The retorting experiments showed that tem­perature had an important influence on shale oil yield and the maximum oil yield was obtained at 550 °C. The oil yield was reduced at higher tempera­tures, resulting in an increase in gas yield. According to the analysis of shale oil composition the high pyrolysis temperature could promote the formation of short-chain hydrocarbons. Meanwhile, more alkenes and aromatics and less heteroatomic compounds were found at high temperature. The long-chain hydrocarbons and heteroatomic compounds were proved to be secondary products decomposed at higher temperature. In addition, the results of nitrogen adsorption/desorption and scanning electron microscopy (SEM) indicated that the shale surface became more porous due to the decomposition of kerogen and more micro- and mesopores were found after the treatment at high temperature.



Liu, Z., Meng, Q., Dong, Q., Zhu, J., Guo, W., Ye, S., Liu, R., Jia, J. Char­acteristics and resource potential of oil shale in China. Oil Shale, 2017, 34(1), 15‒41.

2.  Feng, Z., Jia, C., Xie, X., Zhang, S., Feng, Z., Cross, T. Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao basin, northeast China. Basin Res., 2010, 22(1), 79‒95.

3.  Wang, P., Mattern, F., Didenko, A., Zhu, D., Singer, B., Sun, X. Tectonics and cycle system of the Cretaceous Songliao Basin: An inverted active continental margin basin. Earth-Sci. Rev., 2016, 159, 82‒102.

4.  Bechtel, A., Jia, J., Strobl, S., Sachsenhofer, R., Liu, Z., Gratzer, R., Püttmann, W. Palaeoenvironmental conditions during deposition of the Upper Cretaceous oil shale sequences in the Songliao Basin (NE China): Implications from geochemical analysis. Org. Geochem., 2012, 46, 76‒95.

5.  Xu, J., Liu, Z., Bechtel, A., Meng, Q., Sun, P., Jia, J., Cheng, L., Song, Y. Basin evolution and oil shale deposition during Upper Cretaceous in the Songliao Basin (NE China): Implications from sequence stratigraphy and geochemistry. Int. J. Coal Geol., 2015, 149, 9‒23.

6.  Hu, F., Liu, Z., Meng, Q., Wang, J., Song, Q., Xie, W. Biomarker characterization of various oil shale grades in the Upper Cretaceous Qingshankou Formation, Southeastern Songliao Basin, NE China. Oil Shale, 2018, 35(4), 304‒326.

7.  Brandt, A. R. Converting oil shale to liquid fuels: Energy inputs and greenhouse gas emissions of the Shell in situ conversion process. Environ. Sci. Technol., 2008, 42(19), 7489‒7495.

8.  Symington, W. A., Olgaard, D. L., Otten, G. A., Phillips, T. C., Thomas, M. M., Yeakel, J. D. ExxonMobil’s Electrofrac process for in situ oil shale conversion. In: Oil Shale: A Solution to the Liquid Fuel Dilemma. ACS Sym. Ser., 2010, 1032, 185‒216.

9.  Burnham, A., Day, R., Wallman, P., McConaghy, J., Harris, H., Lerwick, P., Vawter, R. In situ method and system for extraction of oil from shale. U.S. Patent 2011, 7,921,907.

10.       Yang, D., Elsworth, D., Kang, Z. Q., Zhao, Y. S., Zheng, B. Experiments on permeability evolution with temperature of oil shale. In: Proceedings of the 46th US Rock Mechanics/Geomechanics Symposium, Chicago, IL, USA, 24–27 June 2012, 3, 1831–1835.

11.       Deng, S., Wang, Z., Gao, Y., Gu, Q., Cui, X., Wang, H. Sub-critical water extraction of bitumen from Huadian oil shale lumps. J. Anal. Appl. Pyrol., 2012, 98, 151‒158.

12.       Cao, H., Kaufman, A. J., Shan, X., Cui, H., Zhang, G. Sulfur isotope constraints on marine transgression in the lacustrine Upper Cretaceous Songliao Basin, northeastern China. Palaeogeogr. Palaeocl., 2016, 451, 152‒163.

13.       Jiang, H., Song, L., Cheng, Z., Chen, J., Zhang, L., Zhang, M., Hu, M., Li, J., Li, J. Influence of pyrolysis condition and transition metal salt on the product yield and characterization via Huadian oil shale pyrolysis. J. Anal. Appl. Pyrol., 2015, 112, 230‒236.

14.       Kok, M. V. Thermal investigation of Seyitomer oil shale. Thermochim. Acta, 2001, 369(1‒2), 149‒155.

15.       Nazzal, J. M., Williams, P. T. Influence of temperature and steam on the products from the flash pyrolysis of Jordan oil shale. Int. J. Energ. Res., 2002, 26(14), 1207‒1219.

16.       Ahmad, N., Williams, P. T. Influence of particle grain size on the yield and composition of products from the pyrolysis of oil shales. J. Anal. Appl. Pyrol., 1998, 46(1), 31‒49.

17.       Gai, R., Jin, L., Zhang, J., Wang, J., Hu, H. Effect of inherent and additional pyrite on the pyrolysis behavior of oil shale. J. Anal. Appl. Pyrol., 2014, 105, 342‒347.

18.       Lai, D., Shi, Y., Geng, S., Chen, Z., Gao, S., Zhan, J.-H., Xu, G. Secondary reactions in oil shale pyrolysis by solid heat carrier in a moving bed with internals. Fuel, 2016, 173, 138‒145.

19.       Yuzbasi, N. S., Selçuk, N. Air and oxy-fuel combustion characteristics of biomass/lignite blends in TGA-FTIR. Fuel Process. Technol., 2011, 92(5), 1101‒1108.

20.       Le Doan, T. V., Bostrom, N. W., Burnham, A. K., Kleinberg, R. L., Pomerantz, A. E., Allix, P. Green River oil shale pyrolysis: semi-open conditions. Energ. Fuel., 2013, 27(11), 6447‒6459.

21.       Han, H., Cao, Y., Chen, S.-j., Lu, J.-g., Huang, C.-x., Zhu, H.-h., Zhan, P., Gao, Y. Influence of particle size on gas-adsorption experiments of shales: An example from a Longmaxi Shale sample from the Sichuan Basin, China. Fuel, 2016, 186, 750‒757.

22.       Josh, M., Esteban, L., Delle Piane, C., Sarout, J., Dewhurst, D. N., Clennell, M. B. Laboratory characterisation of shale properties. J. Petrol. Sci. Eng., 2012, 88‒89, 107‒124.

23.       Niu, M., Wang, S., Han, X., Jiang, X. Yield and characteristics of shale oil from the retorting of oil shale and fine oil-shale ash mixtures. Appl. Energ., 2013, 111, 234‒239.

24.       Tiwari, P., Deo, M., Lin, C. L., Miller, J. D. Characterization of oil shale pore structure before and after pyrolysis by using X-ray micro CT. Fuel, 2013, 107, 547‒554.

25.       Sun, Y., Bai, F., Liu, B., Liu, Y., Guo, M., Guo, W., Wang, Q., Lü, X., Yang, F., Yang, Y. Characterization of the oil shale products derived via topochemical reaction method. Fuel, 2014, 115, 338‒346.

26.       Wang, S., Liu, J., Jiang, X., Han, X., Tong, J. Effect of heating rate on products yield and characteristics of non-condensable gases and shale oil obtained by retorting Dachengzi oil shale. Oil Shale, 2013, 30(1), 27‒47.

27.       Wang, S., Jiang, X., Han, X., Tong, J. Effect of residence time on products yield and characteristics of shale oil and gases produced by low-temperature retorting of Dachengzi oil shale. Oil Shale, 2013, 30(4), 501‒516.

28.       Bake, K. D., Pomerantz, A. E. Optical analysis of pyrolysis products of Green River oil shale. Energ. Fuel., 2017, 31(12), 13345‒13352.

29.       Jaber, J. O., Probert, S. D. Non-isothermal thermogravimetry and decom­position kinetics of two Jordanian oil shales under different processing con­ditions. Fuel Process. Technol., 2000, 63(1), 57‒70.

30.       Loo, L., Maaten, B., Neshumayev, D., Konist, A. Oxygen influence on Estonian kukersite oil shale devolatilization and char combustion. Oil Shale, 2017, 34(3), 219‒231.

31.       Loo, L., Maaten, B., Siirde, A., Pihu, T., Konist, A. Experimental analysis of the combustion characteristics of Estonian oil shale in air and oxy-fuel atmospheres. Fuel Process. Technol., 2015, 134, 317‒324.

32.       Kosakowski, P., Kotarba, M. J., Piestrzyński, A., Shogenova, A., Więcław, D. Petroleum source rock evaluation of the Alum and Dictyonema Shales (Upper Cambrian–Lower Ordovician) in the Baltic Basin and Podlasie Depression (eastern Poland). Int. J. Earth Sci., 2016, 106(2), 743‒761.

33.       Xu, J., Bechtel, A., Sachsenhofer, R. F., Liu, Z., Gratzer, R., Meng, Q., Song, Y. High resolution geochemical analysis of organic matter accumulation in the Qingshankou Formation, Upper Cretaceous, Songliao Basin (NE China). Int. J. Coal Geol., 2015, 141142, 23‒32.

34.       Liu, Q., Han, X., Li, Q., Huang, Y., Jiang, X. TG–DSC analysis of pyrolysis process of two Chinese oil shales. J. Therm. Anal. Calorim., 2013, 116(1), 511‒517.

35.       Moine, E. c., Groune, K., El Hamidi, A., Khachani, M., Halim, M., Arsalane, S. Multistep process kinetics of the non-isothermal pyrolysis of Moroccan Rif oil shale. Energy, 2016, 115, Part 1, 931‒941.

36.       Maaten, B., Loo, L., Konist, A., Siirde, A. Mineral matter effect on the decomposition of Ca-rich oil shale. J. Therm. Anal. Calorim., 2018, 131(3), 2087‒2091.

37.       Li, M., Zhan, J.-H., Lai, D., Tian, Y., Liu, X., Xu, G. Study on the evolution characteristic of intermediate during the pyrolysis of oil shale. J. Therm. Anal. Calorim., 2017, 130(3), 2227‒2238.

38.       Tiwari, P., Deo, M. Compositional and kinetic analysis of oil shale pyrolysis using TGA–MS. Fuel, 2012, 94, 333‒341.

39.       Maaten, B., Loo, L., Konist, A., Pihu, T., Siirde, A. Investigation of the evolution of sulphur during the thermal degradation of different oil shales. J. Anal. Appl. Pyrol., 2017, 128, 405‒411.

40.       Maaten, B., Pikkor, H., Konist, A., Siirde, A. Determination of the total sulphur content of oil shale by using different analytical methods. Oil Shale, 2018, 35(2), 144‒153.

41.       Jia, C., Wang, Z., Liu, H., Bai, J., Chi, M., Wang, Q. Pyrolysis behavior of Indonesia oil sand by TG-FTIR and in a fixed bed reactor. J. Anal. Appl. Pyrol., 2015, 114, 250‒255.

42.       Bai, F., Sun, Y., Liu, Y., Guo, M. Evaluation of the porous structure of Huadian oil shale during pyrolysis using multiple approaches. Fuel, 2017, 187, 1‒8.

43.       Wang, L., Cao, H. Probable mechanism of organic pores evolution in shale: Case study in Dalong Formation, Lower Yangtze area, China. J. Nat. Gas Geosci., 2016, 1(4), 295‒298.

44.       Bai, J., Wang, Q., Jiao, G. Study on the pore structure of oil shale during low-temperature pyrolysis. Energy Procedia, 2012, 17, Part B, 1689‒1696.

45.       Cai, Y., Liu, D., Pan, Z., Yao, Y., Li, J., Qiu, Y. Pore structure and its impact on CH4 adsorption capacity and flow capability of bituminous and subbituminous coals from Northeast China. Fuel, 2013, 103, 258‒268.


Back to Issue