ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2020): 0.934

Kinetic study on the pyrolysis behavior of Jimsar oil shale; pp. 462–482

Full article in PDF format | https://doi.org/10.3176/oil.2019.4.02

Authors
Fangqin Dai, Ni Pan, Danni Li, Wei Lü

Abstract

It is well known that the process of oil shale pyrolysis is extremely complicated, for several competing or parallel reactions occur simultaneously, and various products are continuously generated, serving as new reactants. In this work, it is assumed that there occur two parallel reactions in the devolatilization of organic matter, one represents the volatilization of bitumen and the other represents the pyrolysis of kerogen. Kinetic triplets for the competing or parallel reactions are different from each other. To investigate the pyrolysis mechanism of Jimsar oil shale of Xinjiang Province, China in more detail, the bi-Gaussian distribution method, a multi-stage parallel reaction model and two master plots methods are adopted to determine the kinetic models in this work. The apparent activation energy (E) is calculated by the Flynn-Wall-Ozawa (F-W-O), Kissinger-Akahira-Sunose (K-A-S) and Friedman methods. According to the results, it can be concluded that heating rate exerts little influence on the kinetic parameters but has some impact on the pyrolysis process as a whole. The results of this work reveal the pyrolysis characteristics of oil shale to a certain extent.


References

1.         Qian, J. L., Yin, L, Wang, J. Q., Li, S. Y., Han, F., He, Y. G. Oil Shale  Petroleum Alternative. China Petrochemical Press, Beijing, 2010.

2.         Bai, Y. L. Prospects for development of oil shale deposits in southeastern margin of Junggar basin. Xinjiang Petroleum Geology, 2008, 29(4), 462–465 (in Chinese).

3.         Williams, P. T., Ahmad, N. Investigation of oil-shale pyrolysis processing conditions using thermogravimetric analysis. Appl. Energ., 2000, 66(2), 113–133.
https://doi.org/10.1016/S0306-2619(99)00038-0

4.         Bojan, J. The kinetic modeling of the non-isothermal pyrolysis of Brazilian oil shale: Application of the Weibull probability mixture model. J. Petrol. Sci. Eng., 2013, 111, 25–36.
https://doi.org/10.1016/j.petrol.2013.10.001

5.         Liu, QQ., Han, XX., Li, QY., Huang, Y. R., Jiang, X. M. TG–DSC analysis of pyrolysis process of two Chinese oil shales. J. Therm. Anal. Calorim., 2014, 116(1), 511–517.
https://doi.org/10.1007/s10973-013-3524-2

6.         Moine, E. C., Tangarfa, M., Khachani, M., El Hamidi, A., Halim, M., Arsalane, S. Thermal oxidation study of Moroccan oil shale: A new approach to non-isothermal kinetics based on deconvolution procedure. Fuel, 2016, 180, 529–537.
https://doi.org/10.1016/j.fuel.2016.04.076

7.         Wang, Q., Jia, C. X., Jiang, Q. Q., Wang, Y., Wu, D. Y. Pyrolysis model of oil sand using thermogravimetric analysis. J. Therm. Anal. Calorim., 2014, 116(1), 499–509.
https://doi.org/10.1007/s10973-013-3505-5

8.         Al-Harahsheh, M., Al-Ayed, O., Robinson, J., Kingman, S., Al-Harahsheh, A., Tarawneh, K., Saeid, A., Barranco, R. Effect of demineralization and heating rate on the pyrolysis kinetics of Jordanian oil shales. Fuel Process. Technol., 2011, 92(9), 1805–1811.
https://doi.org/10.1016/j.fuproc.2011.04.037

9.         Tiwari, P., Deo, M. Detailed kinetic analysis of oil shale pyrolysis TGA data. AIChE J., 2012, 58(2), 505–515.
https://doi.org/10.1002/aic.12589

10.     Pan, L. W., Dai, F. Q., Li, G. Q., Liu, S. A TGA/DTA-MS investigation to the influence of process conditions on the pyrolysis of Jimsar oil shale. Energy, 2015, 86, 749–757.
https://doi.org/10.1016/j.energy.2015.04.081

11.     Singleton, M. F., Burnham, A. K., Richardson, J. H., Clarkson, J. E. Biomarkers in oil shale: occurrence and applications. Symposium on Geochemistry and Chemistry of Oil Shale Presented before the Divisions of Fuel Chemistry, Geochemistry and Petroleum Chemistry, Inc. American Chemical Society Seattle Meeting, March 20–25, 1983, 181–194.

12.     Brassell, S. C., Eglinton, G., Sheng, G. Y., Fu, J. M. Biological markers in lacustrine Chinese oil shales. Geol. Soc. Spec. Publ., 1988, 40, 299–308.
https://doi.org/10.1144/GSL.SP.1988.040.01.24

13.     Wei, X. C., Liu, S. C., Xia, M. The genesis analysis of oil shale in southern Jimisar, Xinjiang. Xinjiang Geology, 2012, 30, 66–70 (in Chinese, with English abstract).

14.     Oja, V. Examination of molecular weight distributions of primary pyrolysis oils from three different oil shales via direct pyrolysis Field Ionization Spectrometry. Fuel, 2015, 159,759–765.
https://doi.org/10.1016/j.fuel.2015.07.041

15.     Li, S. Y., Yue, C. T. Study of pyrolysis kinetics of oil shale. Fuel, 2003, 82(3), 337–342.
https://doi.org/10.1016/S0016-2361(02)00268-5

16.     Bar, H., Ikan, R., Aizenshtat, Z. Comparative study of the isothermal pyrolysis kinetic behavior of some oil shales and coals. J. Anal. Appl. Pyrol., 1988, 14(1), 49–71.
https://doi.org/10.1016/0165-2370(88)80007-X

17.     Wang, W., Li, S. Y., Li, L. Y., Ma, Y., Yue, C. T., He, J. L. Pyrolysis kinetics of North-Korean oil shale. Oil Shale, 2014, 31(3), 250–265.
https://doi.org/10.3176/oil.2014.3.05

18.     Wang, Q., Liu, H. P., Sun, B. Z., Li, S. H. Study on pyrolysis characteristics of Huadian oil shale with isoconversional method. Oil Shale, 2009, 26(2), 148–162.
https://doi.org/10.3176/oil.2009.2.07

19.     Vyazovkin, S., Burnham, A. K., Criado, J. M., Pérez-Maqueda, L. A., Popescu, C.-M., Sbirrazzuoli, N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta, 2011, 520, 1–19.
https://doi.org/10.1016/j.tca.2011.03.034

20.     Flynn, J. H., Wall, L. A. A quick, direct method for the determination of activation energy from thermogravimetric data. J. Polym. Sci., Part C: Polym. Lett., 1966, 4(5), 323–328.
https://doi.org/10.1002/pol.1966.110040504

21.     Bai, F. T., Guo, W., Lü, X. S., Liu, Y. M., Guo, M. Y., Li, Q., Sun, Y. H. Kinetic study on the pyrolysis behavior of Huadian oil shale via non-isothermal thermogravimetric data. Fuel, 2015, 146, 111–118.
https://doi.org/10.1016/j.fuel.2014.12.073

22.     Friedman, H. L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J. Polym. Sci. Part C: Pol. Sym., 1964, 6(1), 183–195.
https://doi.org/10.1002/polc.5070060121

23.     Criado, J. M., Malek, J., Ortega, A. Applicability of the master plots in kinetic analysis of non-isothermal data. Thermochim. Acta, 1989, 147(2), 377–385.
https://doi.org/10.1016/0040-6031(89)85192-5

24.     Malek, J. The kinetic analysis of non-isothermal data. Thermochim. Acta, 1992, 200, 257–269.
https://doi.org/10.1016/0040-6031(92)85118-F

25.     Gotor, F. J., Criado, J. M., Malek, J., Koga, N. Kinetic analysis of solid-state reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments. J. Phys. Chem. A, 2000, 104(46), 10777–10782.
https://doi.org/10.1021/jp0022205

26.     Zhu, K. H., Wan, Y. J. Gauss function method for DTA overlapping peak. Computers and Applied Chemistry, 1997, 4, 303–306 (in Chinese with English abstract).

27.     Criado, J., Malek, J., Ortega, A. Applicability of the master plots in kinetic analysis of non-isothermal data. Thermochim. Acta, 1989, 147(2), 377–385.
https://doi.org/10.1016/0040-6031(89)85192-5

28.     Senum, G. I., Yang, R. T. Rational approximations of the intergral of the Arrhenius function. J. Therm. Analysis, 1977, 11(3), 445–447.
https://doi.org/10.1007/BF01903696

29.     Romanenko, S. V., Stromberg, A. G. Classification of mathematical models of peak-shaped analytical signals. J. Anal. Chem+., 2000, 55(11), 1024–1028.
https://doi.org/10.1007/BF02757325

30.     Romanenko, S. V., Stromberg, A. G. Modelling of analytical peaks: peaks modifications. Anal. Chim. Acta, 2007, 581(2), 343–354.
https://doi.org/10.1016/j.aca.2006.08.028

31.     Granoff, B., Nuttall Jr, H. E. Pyrolysis kinetics for oil-shale particles. Fuel, 1977, 56(3), 234–240.
https://doi.org/10.1016/0016-2361(77)90001-1

32.     Shin, S. M., Sohn, H. Y. A mathematical model for the retorting of a large block of oil shale: effect of the internal temperature gradient. Fuel, 1978, 57(10), 622–630.
https://doi.org/10.1016/0016-2361(78)90192-8

33.     Pan, Z. L., Feng, H. Y., Smith, J. M. Rates of pyrolysis of Colorado oil shale. AIChE J., 1985, 31(5), 721–728.
https://doi.org/10.1002/aic.690310504

34.     Williams, P. T., Ahmad, N. Investigation of oil-shale pyrolysis processing conditions using thermogravimetric analysis. Appl. Energ., 2000, 66(2), 113–133.
https://doi.org/10.1016/S0306-2619(99)00038-0

35.     You, Y. H., Huang, H., Shao, G. W., Hu, J., Xu, X. C., Luo, X. B. A three-dimensional numerical model of unsteady flow and heat transfer in ceramic honeycomb regenerator. Appl. Therm. Eng., 2016, 108, 1243–1250.
https://doi.org/10.1016/j.applthermaleng.2016.08.035


Back to Issue