ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2020): 0.934

Numerical simulation of in situ exploitation of oil shale by injecting high-temperature steam; pp. 483–500

Full article in PDF format | https://doi.org/10.3176/oil.2019.4.03

Authors
Dong Yang, Yangsheng Zhao, Zhiqin Kang

Abstract

Oil shale has a very important strategic value for energy safety, but in situ pyrolysis technology still faces both scientific and technical problems that urgently need to be overcome. Among the current world’s oil shale in situ conversion technologies, the Chinese in situ pyrolysis technique, which consists in injecting high-temperature water vapor, is considered to be one of the most efficient methods in this field. The thermal-hydraulic-mechanical-chemical (THMC) coupling model for this method is presented. Based on the model, the temperature distribution and permeability evolution were simulated. It was concluded that, first, due to the existence of prefracturing cracks, the pyrolysis front tended to be focused on both sides of the prefracturing cracks and the region had a relatively high temperature and permeability. Also, the pyrolysis front formed a sharp protrusion at the leading edge on both sides of the crack. Second, in the process of pyrolysis, pore-crack and tensile stress in the high-temperature region increased rapidly, and the permeability coefficient increased by 3–4 orders of magnitude and formed an in situ pyrolysis zone of oil shale. Third, the thermal protective, seepage insulation and stress trap zones were formed around the pyrolysis zone, and the internal boundaries of the three zones coincided, thus forming a good environment for underground pyrolysis similar to that of ground retorting.


References

1.         Ryan, R. C., Fowler, T. D., Beer, G. L., Nair, V. Shell’s in situ conversion process ‒ From laboratory to field pilots. ACS Sym. Ser., 1032 (Ogunsola, O. I., Hartstein, A. M., Ogunsola, O., eds.), Oxford University Press, 2010, 161‒183.
https://doi.org/10.1021/bk-2010-1032.ch009

2.         Crawford, P. M., Killen, J. C. New challenges and directions in oil shale development technologies. In: Oil Shale: Solutions to the Liquid Fuel Dilemma (Ogunsola, O. I., Hartstein, A. M., Ogunsola, O., eds.), ACS Sym. Ser., 1032, 2010, 21–60.
https://doi.org/10.1021/bk-2010-1032.ch002

3.         Tanaka, P. L., Yeakel, J. D., Symington, W. A., Meurer, W., Spiecker, P. M., Del Pico, M., Thomas, M., Sullivan, K., Stone, M. Plan to test an in situ planar heater on a proposed RD&D Lease. Proceedings of the 31st Oil Shale Symposium. Golden, CO, Colorado School of Mines, 17‒19 October 2011, 1‒13.

4.         El Harfi, K., Mokhlisse, A., Chanâa, M. B., Outzourhit, A. Pyrolysis of the Moroccan (Tarfaya) oil shales under microwave irradiation. Fuel, 2000, 79(7), 733‒742.
https://doi.org/10.1016/S0016-2361(99)00209-4

5.         Braun, R. L., Diaz, J. C., Lewis, A. E. Results of mathematical modeling of modified in-situ oil shale retorting. Soc. Petrol. Eng. J., 1984, 24(1), 75‒86.
https://doi.org/10.2118/11000-PA

6.         Braun, R. L., Burnham, A. K. Mathematical model of oil generation, degradation, and expulsion. Energ. Fuel., 1990, 4(2), 132‒146.
https://doi.org/10.1021/ef00020a002

7.         Burnham, A. K., Switzer, L., Day, R. L., McConaghy, J., Hradisky, M., Coates, D., Smith, P., Foulkes, J., La Brecque, D., Allix, P., Wallman, H. Initial results from the AMSO RD&D pilot test program. Proceedings of the 32nd Oil Shale Symposium. Golden, CO, Colorado School of Mines, 15‒17 October 2012.

8.         Burnham, A. K. Porosity and permeability of Green River oil shale and their changes during retorting. Fuel, 2017, 203: 208‒213.
https://doi.org/10.1016/j.fuel.2017.04.119

9.         Fan, Y., Durlofsky, L., Tchelepi, H. A. Numerical simulation of the in-situ upgrading of oil shale. Soc. Petrol. Eng. J., 2010, 15(2), 368‒381.
https://doi.org/10.2118/118958-PA

10.     Hoda, N., Fang, C., Lin, M. W., Symington, W. A., Stone, M. T. Numerical modeling of ExxonMobil’s Electrofrac field experiment at Colony Mine. Proceedings of the 30nd Oil Shale Symposium. Golden, CO, Colorado School of Mines, 18‒20 October 2010, 1‒13.

11.     Lee, K. J., Moridis, G. J., Ehlig-Economides, C. A. Numerical simulation of diverse thermal in situ upgrading processes for the hydrocarbon production from kerogen in oil shale reservoirs. Energ. Explor. Exploit., 2017, 35(3), 315‒337.
https://doi.org/10.1177/0144598716689354

12.     Lee, K. J., Moridis, G. J., Ehlig-Economides, C. A. In situ upgrading of oil shale by Steamfrac in multistage transverse fractured horizontal well system. Energ. Source. Part A, 2016, 38(20), 3034‒3041.
https://doi.org/10.1080/15567036.2015.1135209

13.     Hui, H., Ning-Ning, Z., Cai-Xia, H., Yan, L., Qing-Yong, L., Na, D., Xiao-Yan, H. Numerical simulation of in situ conversion of continental oil shale in Northeast China. Oil Shale, 2016, 33(1), 45‒57.
https://doi.org/10.3176/oil.2016.1.04

14.     Kelkar, S., Pawar, R., Hoda, N. Numerical simulation of coupled thermal-hydrological-mechanical-chemical processes during in situ conversion and production of oil shale. Proceedings of the 31st Oil Shale Symposium. Golden, CO, Colorado School of Mines, 17‒19 October 2011, 1‒8.

15.     Youtsos, M. S. K., Mastorakos, E., Cant, R. S. Numerical simulation of thermal and reaction fronts for oil shale upgrading. Chem. Eng. Sci., 2013, 94, 200‒213.
https://doi.org/10.1016/j.ces.2013.02.040

16.     Zhang, F., Parker, J. C. An efficient modeling approach to simulate heat transfer rate between fracture and matrix regions for oil shale retorting. Transport Porous Med., 2010, 84(1), 229‒240.
https://doi.org/10.1007/s11242-009-9495-x

17.     Lee, K., Moridis, G. J., Ehlig-Economides, C. A. Oil shale in-situ upgrading by steam flowing in vertical hydraulic fractures. SPE Unconventional Resources Conference, 1‒3 April 2014, The Woodlands, Texas, USA. Society of Petroleum Engineers, 2014, 1‒13.
https://doi.org/10.2118/169017-MS

18.     Lee, K. J., Moridis, G. J., Ehlig-Economides, C. A. A comprehensive simulation model of kerogen pyrolysis for the in-situ upgrading of oil shales. Soc. Petrol. Eng. J., 2016, 21(5), 1612‒1630.
https://doi.org/10.2118/173299-PA

19.     Zhao, Y. S., Feng, Z. C., Yang, D. et al. The Method for Mining Oil & Gas from Oil Shale by Convection Heating. China Invent Patent, CN200510012473, April 20, 2005.

20.     Kang, Z. Q. The Pyrolysis Characteristics and In-Situ Hot Drive Simulation Research That Exploit Oil-Gas of Oil Shale. PhD Thesis, Taiyuan University of Technology (in Chinese).

21.    Zhao, J. Experimental Study on the Microscopic Characteristics and Mechanical Properties of Oil Shale under High Temperature & Three-Dimensional Stress. PhD Thesis, Taiyuan University of Technology (in Chinese).


Back to Issue