eesti teaduste
akadeemia kirjastus
SINCE 1984
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2020): 0.934
The chemometric approach to identification of residual oil contamination at former primitive asphalt pavement plants; pp. 410–430

Jelena Jurjeva, Mihkel Koel

This study investigated polycyclic aromatic hydrocarbons (PAHs) and hydrocarbon oil index (HOI) pollution in the soil on the territories of two former primitive asphalt pavement plants (APPs) in Estonia. The standard quantitative methods for the chemical characterisation of the oils consisted of an initial screening, by using a gas chromatography-flame ionization detector (GC-FID), and, for a more detailed analysis, of gas chromatography-mass spectrometry (GC-MS). A combination of chemometric and analytical methods was used to identify the sources of PAHs, which could be attributed to the soil pollution at the plants. The identification and classification of oil spills were performed using chemometric techniques, such as the principal component analysis (PCA) and the clustering analysis (CA), which is based on Jaccard similarity. The application of the chemometric techniques enabled the clustering and discrimination of polluted soils into four groups, according to oil type. Several different methods of CA, such as single, complete and average linkages, were tested and the results were compared.


1.       Eesti Päevaleht. In the road construction there occurred a 6680-tonne mazut spill. Report. Last visited September 2018 (in Estonian).

2.       AS Maves. The control and monitoring of hazardous residual contamination. Report. Tallinn, 2004 (in Estonian).

3.       Mas, S., de Juan, A., Tauler, R., Olivieri, A. C., Escandar, G. M. Application of chemometric methods to environmental analysis of organic pollu-tants: A review. Talanta, 2010, 80(3), 1052–1067.

4.       Ramirez, M. I., Arevalo, A. P., Sotomayor, S., Bailon-Moscoso, N. Conta-mination by oil crude extraction – Refinement and their effects on human health. Environ. Pollut., 2017, 231(1), 415–425.

5.       Eesti keskkonnauuringute keskus. The development of the methodology for reducing residual pollution at former military and industrial objects, Phase I. Report. 2013 (in Estonian).

6.       Bruzzoniti, M. C., Fungi, M., Sarzanini, C. Determination of EPA’s priority pollutant polycyclic aromatic hydrocarbons in drinking waters by solid phase extraction-HPLC. Anal. Methods, 2010, 2, 739–745.

7.       Jefimova, J., Irha, N., Reinik, J., Kirso, U., Steinnes, E. Leaching of polycyclic aromatic hydrocarbons from oil shale processing waste deposit: A long-term field study. Sci. Total Environ., 2014, 481, 605–610.

8.       Retnam, A., Zakaria, M. P., Juahir, H., Aris, A. Z., Zali, M. A., Kasim, M. F. Chemometric techniques in distribution, characterisation and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in aquaculture sediments in Malaysia. Mar. Pollut. Bull., 2013, 69(1–2), 55–66.

9.       Lau, E. V., Gan, S., Ng, H. K. Extraction Techniques for Polycyclic Aromatic Hydrocarbons in Soils. Int. J. Anal. Chem., 2010, Article ID 398381, 2010.

10.    Pongpiachan, S., Hattayanone, M., Tipmanee, D., Suttinun, O., Khumsup, C.,- Kittikoon, I., Hirunyatrakul, P. Chemical characterization of polycyclic aromatic hydrocarbons (PAHs) in 2013 Rayong oil spill-affected coastal areas of Thailand. Environ. Pollut., 2018, 233, 992–1002.

11.    Dudhagara, D. R., Rajpara, R. K., Bhatt, J. K., Gosai, H. B., Sachaniya, B. K., Dave, B. P. Distribution, sources and ecological risk assessment of PAHs in historically contaminated surface sediments at Bhavnagar coast, Gujarat, India. Environ. Pollut., 2016, 213, 338–346.

12.    Koch, M., Liebich, A., Win, T., Nehls, I. Certified Reference Materials for the determination of mineral oil hydrocarbons in water, soil and waste. Forschungsbericht 272, Berlin, 2005.

13.    Konečný, F., Boháček, Z., Müller, P., Kovářová, M., Sedláčková, I.
Contamination of soils and groundwater by petroleum hydrocarbons and volatile organic compounds – Case study: ELSLAV BRNO. Bull. Geosci., 2003, 78(3), 225–239.

14.    Wüst, B. Measuring Hydrocarbon Oil Index according to ISO 9377-2 (DIN H53). Environmental Application. Ga Chromatography. Last visited October 2018.

15.    Christensen, J. H., Tomasi, G. Practical aspects of chemometrics for oil spill fingerprinting. J. Chromatogr. A, 2007, 1169(1–2), 1–22.

16.    Lubes, G., Goodarzi, M. Analysis of volatile compounds by advanced analytical techniques and multivariate chemometrics. Chem. Rev., 2017, 117(9), 6399−6422.

17.    Hopke, P. K. Chemometrics applied to environmental systems. Chemom. Intell. Lab. Syst., 2015, 149(B), 205–214.

18.    Singh, I., Juneja, P., Kaur, B., Kumar, P. Pharmaceutical applications of chemometric techniques. ISRN Anal. Chem., 2013, Article ID 795178, 2013.

19.    Mali, M., Dell’Anna, M. M., Notarnicola, M., Damiani, L., Mastrorilli, P. Combining chemometric tools for assessing hazard sources and factors acting simultaneously in contaminated areas. Case study: “Mar Piccolo” Taranto (South Italy). Chemosphere, 2017, 184, 784–794.

20.    Panchuk, V., Yaroshenko, I., Legin, A., Semenov, V., Kirsanov, D. Application of chemometric methods to XRF-data - A tutorial review. Anal. Chim. Acta, 2018, 1040, 19–32.

21.    Gad, H. A., El-Ahmady, S. H., Abou-Shoer, M. I., Al-Azizi, M. M. Application of chemometrics in authentication of herbal medicines: a -review. Phytochem. Analysis, 2013, 24(1), 1–24.

22.    Novák, M., Palya, D., Bodai, Z., Nyiri, Z., Magyar, N., Kovács, J., Eke, Z. Combined cluster and discriminant analysis: An efficient chemometric approach in diesel fuel characterization. Forensic Sci. Int., 2017, 270, 61–69.

23.    Brereton, R. G. Chemometrics: Data Analysis for the Laboratory and Chemical Plant. Wiley, Chichester, 2003.

24.    Miki, S., Uno, S., Ito, K., Koyama, J., Tanaka, H. Distributions of -polycyclic aromatic hydrocarbons and alkylated polycyclic aromatic -hydrocarbons in Osaka Bay, Japan. Mar. Pollut. Bull., 2014, 85(2), 558–565.

25.    ISO 16703:2011. Soil quality - Determination of content of hydrocarbon in the range C10 to C40 by gas chromatography, 2011.

26.    Hupp, A. M., Marshall, L. J., Campbell, D. I., Smith, R. W., McGuffin, V. L. Chemometric analysis of diesel fuel for forensic and environmental applications. Anal. Chim. Acta, 2008, 606(2), 159–171.

27.    Raschka, S. About Feature Scaling and Normalization – and the effect of standardization for machine learning algorithms. Last visited November 2018.

28.    Risvik, H. Principal Component Analysis (PCA) & NIPALS algorithm, 2007. Last visited November 2018.

29.    Oksanen, J. R package version. Multivariate Analysis of Ecological Communities in R: vegan tutorial, 2011.

30.    Romesburg, H. C. Cluster Analysis for Researchers. Lulu Press, 2004.

31.    Zuur, A., Ieno, E., Meesters, E. A Beginner’s Guide to R. Springer Publishing Company, 2009.

32.    AS Maves. Last visited January 2019 (in Estonian).

33.    Barakat, A. O., Mostafa, A. R., Qian, Y., Kennicutt IIMC. Applica-tion of petroleum hydrocarbon chemical fingerprinting in oil spill investigations – Gulf of Suez, Egypt. Spill Sci. Technol. B., 2002, 7(5–6), 229–239.

34.    Zemo, D. A., Bruya, J. E., Graf, T. E. The application of petroleum hydrocarbon fingerprint characterization in site investigation and remediation. Ground Water Monit. R., 1995, 15(2), 147–156.

35.    ISO 18287:2006. Soil quality - Determination of polycyclic aromatic hydrocarbons (PAH) - Gas chromatographic method with mass spectrometric detection (GC-MS), 2006.

36.    Malmquist, L. M., Olsen, R. R., Hansen, A. B., Andersen, O., Christensen, J. H. Assessment of oil weathering by gas chromato-graphy – mass spectrometry, time warping and principal component -analysis.
J. Chromatogr. A, 2007, 1164(1–2), 262–270.

Back to Issue