eesti teaduste
akadeemia kirjastus
SINCE 1984
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
Aggregate production from burnt oil shale and CO2 – an Estonian perspective; pp. 431–447

Hakan Berber, Kadriann Tamm, Mari-Liis Leinus, Rein Kuusik, Mai Uibu

Estonia’s main calcareous industrial waste output, such as burnt oil shale (BOS) from Narva Power Plants (PPs), cement kiln dust (CKD) from AS Kunda Nordic Tsement and municipal solid waste incineration (MSWI) residues from Iru Power Plant (PP), were all tested in a novel mixer-type granulator-carbonator for the production of constructional aggregates, with a focus being placed on the mechanical properties, the CO2 binding ability, and leaching behaviour. The mixtures of wastes after the addition of cement and quarry fines gave aggregates which exhibited satisfactory mechanical and leaching properties for further utilisation. The results of this study could serve as a basic research step towards closing the waste cycle in Estonian energy and cement sectors.


1.       Estonian Environment Agency. Estonian Environmental Review 2013, Chapter 4 (Waste), 95‒115. (accessed in September 2018).

2.       Eesti Energia. Annual Report 2016. 194 pp.  (accessed in September 2018).

3.       Estonian Environmental Strategy 2030. 48 pp.  (accessed in September 2018).

4.       EVS 927:2017. Burnt shale for building materials. Specification, performance and conformity. Estonian Centre for Standardisation, 2017.

5.       Eesti Energia. Burnt Oil Shale  (accessed in September 2018).

6.       Berber, H., Frey, R., Voronova, V., Koroljova, A. A feasibility study of municipal solid waste incineration fly ash utilisation in Estonia. Waste Manage. Res., 2017, 35(9) 904‒912.

7.       Enefit Renewable Energy. Iru Power Plant Environmental Report 2016. 28 pp (in Estonian).  (accessed in September 2018).

8.       Moora, H., Roos, I., Kask, U., Kask, L., Ounapuu, K. Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia. Energy Procedia, 2017, 128, 222‒229.

9.       EU ETS. Climate Action. (accessed in September 2018).

10.    Loide, V. Relieving the calcium deficiency of field soils by means of liming. Agronomy Research, 2010, 8(Special Issue II), 415–420.

11.    Kaljuvee, T., Loide, V., Einard, M., Kuusik, R. Utilization of granulated oil shale ashes for neutralizing of acidic soils. In: Proceedings of the 3rd International Congress on Water, Waste and Energy Management, Rome, 18th‒20th July 2016. ScienceKNOW Conferences, 1−4, Rome, 2016.

12.    Kaljuvee, T., Jefimova, J., Loide, V., Uibu, M., Einard, M. Influence of the post-granulation treatment on the thermal behaviour and leachability characteristics of Estonian oil shale ashes. J. Therm. Anal. Calorim., 2018, 132(1), 47‒57.

13.    Gunning, P. J., Hills, C. D., Carey, P. J. Production of lightweight aggregate from industrial waste and carbon dioxide. Waste Manag., 2009, 29(10), 2722‒2728.

14.    Lignacite. Sustainable Masonry. Lignacite Ltd. (accessed in September 2018).

15.    Estonian National Waste Management Plan 2014‒2020 (in Estonian). (accessed in September 2018).

16.    Reispere, H. J. Determination of free CaO content in oil shale ash. Transact. Tallinn Polytechnical Institute, series A., Nr. 245, 1966, 73‒76 (in Estonian).

17.    EVS 664:1995. Solid fuels. Sulphur content. Determination of total sulphur and its bonding forms. Estonian Centre for Standardisation, 1995.

18.    Gluba, T., Heim, A., Obraniak, A. Investigation of the drum granulation conditions for mineral raw material of different grain size compositions. Physicochem. Probl. Mi., 2001, 35(1), 103‒112.

19.    Mackaplow, M. B., Rosen, L. A., Michaels, J N. Effect of primary particle size on granule growth and endpoint determination in high-shear wet granulation. Powder Technol., 2000, 108(1), 32‒45.

20.    Bosoaga, A., Masek, O., Oakey, J. M. CO2 capture technologies for cement industry. Energy Procedia, 2009, 1(1), 133‒140.

21.    EVS-EN 1097-11:2013. Tests for mechanical and physical properties of aggregates - Part 11: Determination of compressibility and confined compressive strength of lightweight aggregates. Estonian Centre for Standardisation, 2013.

22.    EVS-EN 1097-6:2013. Tests for mechanical and physical properties of aggregates - Part 6: Determination of particle density and water absorption. Estonian Centre for Standardisation, 2013.

23.    EN 12457-2:2002. Characterisation of waste - Leaching - Compliance test for leaching of granular waste materials and sludges - Part 2: One stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 4 mm (without or with size reduction). Estonian Centre for Standardisation, 2002.

24.    DIN EN ISO 10304-1 (2009). Water quality - Determination of dissolved anions by liquid chromatography of ions - Part 1: Determination of bromide, chloride, fluoride, nitrate, nitrite, phosphate and sulfate.

25.    DIN EN ISO 10304-2 (1996). Water quality - Determination of dissolved anions by liquid chromatography of ions - Part 2: Determination of bromide, chloride, nitrate, nitrite, orthophosphate and sulfate in waste water.

26.    DIN EN 16171:2016. Sludge, treated biowaste and soil - Determination of elements using inductively coupled plasma mass spectrometry (ICP-MS).

27.    DIN EN ISO 10523 (2012). Water quality - Determination of pH.

28.    DIN EN 27888 (1993). Water quality - Determination of electrical conductivity.

29.    DIN EN ISO 17294-2 (2016). Water quality - Application of inductively coupled plasma mass spectrometry (ICP-MS) - Part 2: Determination of selected elements including uranium isotopes.

30.    Colangelo, F., Messina, F., Cioffi, R. Recycling of MSWI fly ash by means of cementitious double step cold bonding pelletization: Technological assessment for the production of lightweight artificial aggregates. J. Hazard. Mater., 2015, 199, 181‒191.

31.    Ministry of the Environment, Republic of Estonia. Regulation of requirements for the construction, use and closure of landfill. RT I, 19.12.2015, 3 (in Estonian).

32.    Uibu, M., Somelar, P., Raado, L.-M., Irha, N., Hain, T., Koroljova, A., Kuusik, R. Oil shale ash based backfilling concrete – Strength development, mineral transformations and leachability. Constr. Build. Mater., 2016, 102, Part 1, 620‒630.

33.    Fernández Bertos, B., Simons, S. J. R., Hills, C. D., Carey, P. J. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. J. Hazard. Mater., 2004, 112(3), 193‒205.

34.    Alonso-Dominguez, D., Alvarez-Serrano, I., Reyes E., Moragues, A. Modifications in C-S-H composition of cement pastes with silica additions under different mixing conditions. Research and Reviews in Materials Science and Chemistry, 2016, 6(1), 1‒23.

35.    Narattha, C., Chaipanich, A. Phase characterizations, physical properties and strength of environment-friendly cold-bonded fly ash lightweight aggregates. J. Clean. Prod., 2018, 171, 1094‒1100.

36.    Kinnarinen, T., Huhtanen, M., Penttilä, M., Häkkinen, A. Removal of chloride from fly ash produced in hazardous waste incineration by leaching and displacement washing in a vertical filter press. Waste Manage. Res., 2013, 31(2), 178‒186.

37.    Chimenos, J. M., Fernández, A. I., Cervantes, A., Miralles, L., Fernández, M. A., Espiell, F. Optimizing the APC residue washing process to minimize the release of chloride and heavy metals. Waste Manage., 2005, 25(7), 686‒693.

38.    François, D., Criado, C. Monitoring of leachate at a test road using treated fly ash from municipal solid waste incinerator. J. Hazard. Mater., 2007, 139(3), 543‒549.

Back to Issue