ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2020): 0.934

ORGANIC GEOCHEMICAL ASSESSMENT AND SHALE GAS POTENTIAL OF LOWER SILURIAN ORGANIC RICH SHALE IN THE GHADAMES BASIN, NORTH AFRICA; pp. 337–352

Full article in PDF format | https://doi.org/10.3176/oil.2019.2.06

Authors
KAMEL DADI, RIADH AHMADI, JAMEL ABDENNACEUR OUALI

Abstract

The Silurian organic rich shale is the main source of hydrocarbons in the Ghadames Basin in North Africa. The basin has been widely characterized as a source rock for Ordovician oil and gas; yet understanding this shale as a shale resource play remains problematic and challenging. In this study, geochemical and mineralogical analyses of drill cuttings derived from five wellbores were carried out to evaluate the unconventional potential of Silurian organic rich shale.
   The results of geochemical analysis show that the present day total organic carbon (TOC) of this shale is generally medium to good, varying between 1 and 5 wt%. The hydrogen index (HI = 55–201 mg HC/g TOC) and Tmax (435–454 °C) values indicate type II kerogen in a mature state and its ability to generate wet gas. The results of mineralogical analysis show that clay minerals dominate in all samples of Silurian shale (39–58%) followed by quartz (16–37%). Geochemical parameters such as Mo, V, As, Zr and TiO2 indicate that these shales were deposited in anoxic conditions and were sourced from intermediate igneous rocks. In order to evaluate the potential of Silurian shale as oil and gas source, in this work, the chemostratigraphy technique was applied to identify the provenance of silica in shales, to characterize the shale brittleness and model a correlation between the mineralogy and organic matter content. In conclusion, the Silurian organic rich shale in the Ghadames Basin exhibits good characteristics for shale resource hydrocarbons production.


References

1.      Mohammednoor, M., Orhan, H. Organic geochemical characteristics and source rock potential of Upper Pliocene shales in the Akçalar lignite basin, Turkey. Oil Shale, 2017, 34(4), 295–311.
https://doi.org/10.3176/oil.2017.4.01

2.      Pettijohn, F. J. Sedimentary Rocks, 2nd edn. Harper & Row, NewYork, 1957.

3.      Stevens, S., Kuuskraa, V. Seven plays dominate North America activity. Oil Gas J., 2009, 107(36), 39–49.

4.      Boote, D. R. D., Clark-Lowes, D. D., Traut, M. W. Palaeozoic petroleum systems of North Africa. In: Petroleum Geology of North Africa (Macgregor, D. S., Moody, R. T. J., Clark-Lowes, D. D., eds.). Geol. Soc. London Spec. Publ., 1998, 132(1), 7–68.
https://doi.org/10.1144/GSL.SP.1998.132.01.02

5.      Kuuskraa, V. A., Stevens, S. H., Moodhe, K. EIA/ARI World Shale Gas and Shale Oil Resource Assessment, Advanced Resources International, Inc., Arington, 2013.

6.      Acheche, M. H., M’Rabet, A., Ghariani, H., Ouahchi, A., Montgomery, S. L. Ghadames Basin, Southern Tunisia: a reappraisal of Triassic reservoirs and future prospectivity. AAPG Bull., 2001, 85(5), 765–780.
https://doi.org/10.1306/8626C9F1-173B-11D7-8645000102C1865D

7.      Tissot, B., Espitalié, J., Deroo, G., Tempere, C., Jonathan, D. Origin and migra­tion of hydrocarbons in the eastern Sahara (Algeria). In: Petroleum Geo­chemistry and Basin Evaluation (Demaison, G., Murris, R. J., eds.). 1973, AAPG Memoir 25, 315–334.

8.      Klett, T. R. Total Petroleum Systems of the Illizi Province, Algeria and Libya – Tanezzuft-Illizi. U.S. Geol. Surv. Bull. 2202-A, Denver, 2000, 79 pp.

9.      Klett, T. R. Total Petroleum Systems of the Trias/Ghadames Province, Algeria, Tunisia, and Libya; the Tanezzuft – Oued Mya, Tanezzuft-Melrhir, and Tanezzuft-Ghadames. U.S. Geol. Surv. Bull. 2202-C, 118 pp.

10. Daniels, R. P., Emme, J. J. Petroleum system model, eastern Algeria, from source rock to accumulation: when, where, and how? In: Proceedings of the Seminar on Source Rocks and Hydrocarbon Habitat in Tunisia. Entreprise Tunisienne d’Activités Petrolieres, 1995, 101–124.

11. Makhous, M., Galushkin, Y., Lopatin, N. Burial history and kinetic modeling for hydrocarbon generation. Part II: Applying the GALO model to Saharan basins. AAPG Bull., 1997, 81(10), 1679–1699.

12. Tyson, R. V. Sedimentary Organic Matter: Organic Facies and Palynofacies. Chapman & Hall, London, 1995.
https://doi.org/10.1007/978-94-011-0739-6

13. Peters, K. E., Creaney, S. Geochemical differentiation of Silurian from Devonian crude oils in eastern Algeria. In: Geochemical Investigations in Earth and Space Science: A Tribute to Isaac R. Kaplan (Hill, R. J., Leventhal, J., Aizenshtat, Z., Baedecker, M. J., Claypool, G., Eganhouse, R., Goldhaber, M., Peters, K., eds.). Geo. Soc. S. P., 9, 2004.

14. Montgomery, S. Ghadames basin and surrounding areas – structure, tectonics, geochemistry and field summaries. Petroleum Frontiers, Petroleum Information Corporation, Littleton, CO, 1994, 10(4), 79 pp.

15. Echikh, K. Geology and hydrocarbon occurrences in the Ghadames Basin, Algeria, Tunisia, Libya. In: Petroleum Geology of North Africa (MacGregor, D. S., Moody, R. T. J., Clark-Lowes, D. D., eds.). Geol. Soc. Lond. Spec. Publ., London, 1998, 132(1), 109–129.
https://doi.org/10.1144/GSL.SP.1998.132.01.06

16. Boudjema, A. Structural evolution of the petroleum (Triassic) basin of northeastern Sahara (Algeria) Evolution Structurale du Bassin Pétrolier «Triasique» du Sahara Nord Oriental (Algérie). Thèse à l’Université de Paris-Sud, Centre d’Orsay, 1987 (in French).

17. Kaced, M., Arab, M. The potential of shale gas plays in Algeria. 25th World Gas Conference, Kuala Lumpur, 2012. https://www.researchgate.net/profile/ Mohamed_Arab/publication/282730474_Shale_gas_potential_of_Algerian_Basins/links/
561a214508ae78721f9ebf0e/Shale-gas-potential-of-Algerian-Basins.pdf

18. Galeazzi, S., Point, O., Haddadi, N., Mather, J., Druesne, D. Regional geology and petroleum systems of the Illizi-Berkine area of the Algerian Saharan Platform: An overview. Mar. Petr. Geol., 2010, 27(1), 143–178.
https://doi.org/10.1016/j.marpetgeo.2008.10.002

19. Popescu, B. Algeria/Algerien. In: Regional Geology of the World, Part II: Africa, America, Australia, Antarctica. Gebrüder Borntraeger, Berlin, Stuttgart, 1995, 13–34.

20. Espitalié, J., Marquis, F., Barsony, I. Geochemical logging. In: Analytical Pyrolysis: Techniques and Applications (Voorhess, K. J., ed.). Butterworth-Heinemann, London, 1984.
https://doi.org/10.1016/B978-0-408-01417-5.50013-5

21. Peters, K. E., Cassa, M. R. Applied source rock geochemistry. In: The Petroleum System – From Source to Trap (Magoon, L. B., Dow, W. G., eds.). Am. Assoc. Petr. Geol., Tulsa, 1994, 93–120.

22. Hunt, J. M. Petroleum Geochemistry and Geology. W. H. Freeman and Company, New York, 1995.

23. Herron, M. M. Geochemical classification of terrigenous sands and shales from core or log data. J. Sediment. Res., 1988, 58(5), 820–829.
https://doi.org/10.1306/212F8E77-2B24-11D7-8648000102C1865D

24. Hayashi, K. I., Fujisawa, H., Holland, H. D., Ohmoto, H. Geochemistry of ~1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochim. Cosmochim. Ac., 1997, 61(19), 4115–4137.
https://doi.org/10.1016/S0016-7037(97)00214-7

25. Tribovillard, N., Algeo, T. J., Lyons, T., Riboulleau, A. Trace metals as paleoredox and paleoproductivity proxies: an update. Chem. Geol., 2006, 232(1–2), 12–32.
https://doi.org/10.1016/j.chemgeo.2006.02.012

26. Tribovillard, N., Ramdani, A., Trentesaux, A. Controls on organic accumulation in Late Jurassic shales of northwestern Europe as inferred from trace-metal geochemistry. In: The Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms, and Consequences (Harris, N., ed.). SEPM Spec. P., 2005, 82, 145–164.
https://doi.org/10.2110/pec.05.82.0145

27. Negri, A., Ferretti, A., Wagner, T., Meyers, P. A. Organic-carbon-rich sedi­ments through the Phanerozoic: processes, progress, and perspectives. Palaeogeogr., Palaeocl., 2009, 273(3–4), 213–217.
https://doi.org/10.1016/j.palaeo.2008.11.016

28. Belhaj Mohamed, A. Unconventional shale oil and gas systems in northern Africa: Mineralogical and geochemical analysis from Silurian Shales: Ghadames Basin Southern Tunisia. Presented in European Regional Conference and Exhibition, Lisbon, Portugal, 2015. https://europeevents.aapg.org/ehome/ lisbon2015/conference/posters/

29. Troudi, H., Rezouga, N., Meskini, A. The Unconventional Gas Play in Tunisia Ghadames Basin Requires a Certain Edge. IG/AIG – Shale Gas Workshop, Oran, Algeria, 27–29 February, 2012.

30. Guo, L., Jiang, Z., Liang, C. Mineralogy and shale gas potential of Lower Silurian organic-rich shale at the southeastern margin of Sichuan basin, South China. Oil Shale, 2016, 33(1), 1–17.
https://doi.org/10.3176/oil.2016.1.01

31. Jarvie, D. M., Hill, R. J., Ruble, T. E., Pollastro, R. M. Unconventional shale-gas systems: The Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bull., 2007, 91(4), 475–499.
https://doi.org/10.1306/12190606068

32. Wang, F. P., Gale, J. F. W. Screening criteria for shale-gas systems. Trans­actions of the Gulf Coast Association of Geological Societies, 2009, 59, 779–794.

33. Goktan, R. M., Yilmaz, N. G. A new methodology for the analysis of the relationship between rock brittleness index and drag pick cutting efficiency. J. S. Afr. I. Min. Metall., 2005, 105(10), 727–733.

 


Back to Issue