ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2020): 0.934

OXIDATION CHARACTERISTICS OF THE SEMICOKE FROM THE RETORTING OF OIL SHALE AND WHEAT STRAW BLENDS IN DIFFERENT ATMOSPHERES; pp. 43–61

Full article in PDF format | https://doi.org/10.3176/oil.2019.1.04

Authors
Mao Mu, Xiangxin Han, BIN CHEN, XIUMIN JIANG

Abstract

A new way of utilizing oil shale is its co-retorting with wheat straw for oil. However, the process generates a great amount of combustible solid semicoke waste. To utilize this waste effectively for heating the retorting process, the current work investigated its oxidation characteristics by employ­ing a combined thermogravimetry-mass spectrometry (TG-MS) system, and discussed the effects of three parameters, including the wheat straw mass fraction of matrix samples, as well as different ambient gases and their O2 volume fraction, on the oxidation of the semicoke. In the presence of O2, the whole oxidation process of semicoke samples mainly consists of two stages: the combustion stage (300–600 °C) in which water, CO, CO2 and pollutants are mainly released, and the decomposition stage (600–1000 °C) in which carbonates and sulphates decompose to release CO2 and SO2, respectively. In the combustion stage, increasing both the wheat straw proportion of the original sample and the O2 volume faction can improve the combustion performance of the resulting semicoke blends. In the decom­position stage, the gasification reaction also occurs to produce CO. During the entire oxidation process, semicoke in 21% O2/79% CO2 would give off less NOx and SO2 than in air. And, SO2 formation is also influenced by the O2 fraction, especially above 900 °C.


References

1.       Wu, C. Z, Zhou, Z. Q., Yin, X. L., Yi, W. M. Current status of biomass energy development in China. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(1), 91–99.

2.       Abnisa, F., Wan Daud, W. M. A. A review on co-pyrolysis of biomass: An optional technique to obtain a high-grade pyrolysis oil. Energ. Convers. Manage., 2014, 87, 71–85.
https://doi.org/10.1016/j.enconman.2014.07.007

3.       Haykiri-Acma, H., Yaman, S. Interaction between biomass and different rank coals during co-pyrolysis. Renew. Energ., 2010, 35(1), 288–292.
https://doi.org/10.1016/j.renene.2009.08.001

4.       Jones, J. M., Kubacki, M., Kubica, K., Ross, A. B., Williams, A. Devolatilisa­tion characteristics of coal and biomass blends. J. Anal. Appl. Pyrol., 2005, 74(1–2), 502–511.
https://doi.org/10.1016/j.jaap.2004.11.018

5.       Skodras, G., Grammelis, P., Basinas, P. Pyrolysis and combustion behaviour of coal–MBM blends. Bioresource Technol., 2007, 98(1), 1–8.
https://doi.org/10.1016/j.biortech.2005.12.007

6.       Chen, B., Han, X., Mu, M., Jiang, X. Studies of the co-pyrolysis of oil shale and wheat straw. Energ. Fuel., 2017, 31(7), 6941–6950.
https://doi.org/10.1021/acs.energyfuels.7b00871

7.       Cheng, X., Wang, L., Wang, Z., Zhang, M., Ma, C. Catalytic performance of NO reduction by CO over activated semi-coke supported Fe/Co catalysts. Ind. Eng. Chem. Res., 2016, 55(50), 12710–12722.
https://doi.org/10.1021/acs.iecr.6b00804

8.       Ekvall, T., Andersson, K., Leffler, T., Berg, M. K–Cl–S chemistry in air and oxy-combustion atmospheres. P. Combust. Inst., 2017, 36(3), 4011–4018.
https://doi.org/10.1016/j.proci.2016.08.069

9.       Yuzbasi, N. S., Selçuk, N. Air and oxy-fuel combustion characteristics of biomass/lignite blends in TGA-FTIR. Fuel Process. Technol., 2011, 92(5), 1101–1108.
https://doi.org/10.1016/j.fuproc.2011.01.005

10.    Varol, M., Atimtay, A. T., Bay, B., Olgun, H. Investigation of co-combustion characteristics of low quality lignite coals and biomass with thermogravimetric analysis. Thermochim. Acta, 2010, 510(1–2), 195–201.
https://doi.org/10.1016/j.tca.2010.07.014

11.    Vamvuka, D., Tsamourgeli, V., Galetakis, M. Study on catalytic combustion of biomass mixtures with poor coals. Combust. Sci. Technol., 2014, 186(1), 68–82.
https://doi.org/10.1080/00102202.2013.846331

12.    Gil, M. V., Casal, D., Pevida, C., Pis, J. J., Rubiera, F. Thermal behaviour and kinetics of coal/biomass blends during co-combustion. Bioresource Technol. 2010, 101(14), 5601–5608.
https://doi.org/10.1016/j.biortech.2010.02.008

13.    Gao, Y., Tahmasebi, A., Dou, J. X., Yu, J. L. Combustion characteristics and air pollutant formation during oxy-fuel co-combustion of microalgae and lignite. Bioresource Technol., 2016, 207, 276–284.
https://doi.org/10.1016/j.biortech.2016.02.031

14.    Jayaraman, K., Gökalp, I. Pyrolysis, combustion and gasification characteristics of miscanthus and sewage sludge. Energ. Convers. Manage., 2015, 89, 83–91.
https://doi.org/10.1016/j.enconman.2014.09.058

15.    Fan, Y. L., Yu, Z. S., Fang, S. W., Lin, Y., Lin, Y. S., Liao, Y. F., Ma, X. Q. Investigation on the co-combustion of oil shale and municipal solid waste by using thermogravimetric analysis. Energ. Convers. Manage., 2016, 117, 367–374.
https://doi.org/10.1016/j.enconman.2016.03.045

16.    Yang, Y, Lu, X. F., Wang, Q. H. Investigation on the co-combustion of low calorific oil shale and its semi-coke by using thermogravimetric analysis. Energ. Convers. Manage., 2017, 136, 99–107.
https://doi.org/10.1016/j.enconman.2017.01.006

17.    Han, X. X., Jiang, X. M., Cui, Z. G., Yan, J. W., Liu, J.G. Effects of retorting factors on combustion properties of shale char. J. Therm. Anal. Calorim., 2011, 104(2), 771–779.
https://doi.org/10.1007/s10973-010-1179-9

18.    Li, X. G., Ma, B. G., Xu, L., Hu, Z. W., Wang, X. G.. Thermogravimetric analysis of the co-combustion of the blends with high ash coal and waste tyres. Thermochim. Acta, 2006, 441(1), 79–83.
https://doi.org/10.1016/j.tca.2005.11.044

19.    Luo, S. Y., Xiao, B., Hu, Z. Q., Liu, S. M., Guan, Y. W. Experimental study on oxygen-enriched combustion of biomass micro fuel. Energy, 2009, 34(11), 1880–1884.
https://doi.org/10.1016/j.energy.2009.07.036

20.    Sahu, S. G., Sarkar, P., Chakraborty, N., Adak, A. K. Thermogravimetric assess­ment of combustion characteristics of blends of a coal with different biomass chars. Fuel Process. Technol., 2010, 91(3), 369–378.
https://doi.org/10.1016/j.fuproc.2009.12.001

21.    Coats, A. W., Redfern, J. P. Kinetic parameters from thermogravimetric data. Nature, 1964, 201(4914), 68–69.
https://doi.org/10.1038/201068a0

22.    Vamvuka, D., Sfakiotakis, S. Combustion behaviour of biomass fuels and their blends with lignite. Thermochim. Acta, 2011, 526(1–2), 192–199.
https://doi.org/10.1016/j.tca.2011.09.021

23.    Vamvuka, D., Sfakiotakis, S., Saxioni, S. Evaluation of urban wastes as pro­mising co-fuels for energy production – A TG/MS study. Fuel, 2015, 147, 170–183.
https://doi.org/10.1016/j.fuel.2015.01.070

24.    Vyazovkin, S., Chrissafis, K., Di Lorenzo, M. L., Koga, N., Pijolat, M., Roduit, B., Sbirrazzuoli, N., Suñol, J. J. ICTAC Kinetics Committee recommenda­tions for collecting experimental thermal analysis data for kinetic computations. Thermochim. Acta, 2014, 590(19), 1–23.
https://doi.org/10.1016/j.tca.2014.05.036

25.    Wall, T., Liu, Y., Spero, C., Elliott, L., Khare, S., Rathnam, R., Zeenathal, F., Moghtaderi, B., Buhre, B., Sheng, C., Gupta, R., Yamada, T., Makino, K., Yu, J. An overview on oxyfuel coal combustion – State of the art research and technology development. Chem. Eng. Res. Des., 2009, 87(8), 1003–1016.
https://doi.org/10.1016/j.cherd.2009.02.005

26.    Vamvuka, D., Saxioni, S. Investigation of slagging/fouling and environmental impact of ashes produced from co-combustion of urban wastes with lignite. Fresen. Environ. Bull., 2012, 21(11), 3345–3351.

27.    Han, X., Chen, B., Li, Q., Tong, J., Jiang, X. Organic nitrogen conversion dur­ing the thermal decomposition of Huadian oil shale of China. Oil Shale, 2017, 34(2), 97–109.
https://doi.org/10.3176/oil.2017.2.01

28.    Gai, R. H., Jin, L. J., Zhang, J. B., Wang, J. Y., Hu, H. Q. Effect of inherent and additional pyrite on the pyrolysis behavior of oil shale. J. Anal. Appl. Pyrol., 2014, 105, 342–347.
https://doi.org/10.1016/j.jaap.2013.11.022

29.    Al-Makhadmeh, L. A., Maier, J., Batiha, M. A., Scheffknecht, G. Oxyfuel technology: Oil shale desulfurization behavior during staged combustion. Fuel, 2017, 190, 229–236.
https://doi.org/10.1016/j.fuel.2016.11.022

30.    Tian, L.,Yang, W., Chen, Z., Wang, X., Yang, H., Chen, H. Sulfur behavior during coal combustion in oxy-fuel circulating fluidized bed condition by using TG-FTIR. J. Energy Inst., 2016, 89(2), 264–270.
https://doi.org/10.1016/j.joei.2015.01.020

31.    Yörük, C. R., Meriste, T., Sener, S., Kuusik, R., Trikkel. Thermogravimetric analysis and process simulation of oxy-fuel combustion of blended fuels includ­ing oil shale, semicoke, and biomass. Int. J. Energ. Res., 2018, 42(6), 2213–2224.
https://doi.org/10.1002/er.4011

32.    Chen, J., Yao, H., Zhang, P., Xiao, L., Luo, G., Xu, M. Control of PM1 by kaolin or limestone during O2/CO2 pulverized coal combustion. P. Combust. Inst., 2011, 33(2), 2837–2843.
https://doi.org/10.1016/j.proci.2010.06.158

33.    Yan, Z. Q., Wang, Z. A., Wang, X. F., Liu, H., Qiu, J. R. Kinetic model for calcium sulfate decomposition at high temperature. T. Nonferr. Metal. Soc., 2015, 25(10), 3490–3497.
https://doi.org/10.1016/S1003-6326(15)63986-3

34.    Hoteit, A., Bouquet, E., Schönnenbeck, C., Gilot, P. Sulfate decomposition from circulating fluidized bed combustors bottom ash. Chem. Eng. Sci., 2007, 62(23), 6827–6835.
https://doi.org/10.1016/j.ces.2007.07.057


Back to Issue