eesti teaduste
akadeemia kirjastus
SINCE 1984
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2020): 0.934


Full article in PDF format | https//



In this paper, the direct liquefaction of Turkish Niğde-Ulukışla oil shale in noncatalytic and catalytic conditions was studied. The effects of pressure, tetralin/oil shale ratio, catalyst type and concentration, reaction time and temperature and oil shale/waste paper ratio on the process were investigated. It was found that tetralin/oil shale ratio had no considerable effect on the total and liquefaction products conversions under the non­catalytic conditions. Fe2O3, MoO3, Mo(CO)6, Cr(CO)6 and zeolite were used as catalysts in catalytic liquefaction. The highest total and liquefaction products conversions were obtained using MoO3 as catalyst at a concentration of 9% by weight. Reaction temperature of 400 °C and reaction time of 90 minutes were chosen according to obtained liquefaction results. Co-liquefaction experiments were performed using waste paper. Both the total and oil + gas conversions were increased to a considerable extent by the application of the co-liquefaction process. According to gas chromato­graphic-mass spectrometric (GC-MS) analysis, the liquid product from the liquefaction process of oil shale under catalytic conditions of experiment 22 consisted mainly of naphthalene and its derivatives and polycyclic hydro­carbon such as indene and its derivatives.


1.       Shah, Y. T. Reaction Engineering in Direct Coal Liquefaction. Addison-Wesley Advanced Book Program, Reading, Massachusetts, 1981.

2.       Liu, Z., Shi, S., Li, Y. Coal liquefaction technologies – Development in China and challenges in chemical reaction engineering. Chem. Eng. Sci., 2010, 65(1), 12–17.

3.       Stihle, J., Uzio, D., Lorentz, C., Charon, N., Ponthus, J., Geantet, C. Detailed cha­racterization of coal-derived liquids from direct coal liquefaction on supported catalysts. Fuel, 2012, 95, 79–87.

4.       Jiang, H., Deng, S., Chen, J., Zhang, M., Li, S., Shao, Y., Yang, J., Li, J. Effect of hydrothermal pretreatment on product distribution and characteristics of oil produced by the pyrolysis of Huadian oil shale. Energ. Convers. Manage., 2017, 143, 505–512.

5.       Wu, T., Xue, Q., Li, X., Tao, Y., Jin, Y., Ling, C., Lu, S. Extraction of kerogen from oil shale with supercritical carbon dioxide: Molecular dynamics simulations. J. Supercrit. Fluid., 2016, 107, 499–506.

6.       Lin, L., Lai, D., Guo, E., Zhang, C., Xu, G. Oil shale pyrolysis in indirectly heated fixed bed with metallic plates of heating enhancement. Fuel, 2016, 163, 48–55.

7.       Shi, W., Wang, Z., Song, W., Li, S., Li, X. Pyrolysis of Huadian oil shale under catalysis of shale ash. J. Anal. Appl. Pyrol., 2017, 123, 160–164.

8.       Zhao, X., Liu, Z., Liu, Q. The bond cleavage and radical coupling during pyro­lysis of Huadian oil shale. Fuel, 2017, 199, 169–175.

9.       Bai, F., Sun, Y., Liu, Y., Guo, M. Evaluation of the porous structure of Huadian oil shale during pyrolysis using multiple approaches. Fuel, 2017, 187, 1–8.

10.    Pan, L., Dai, F., Li, G., Liu, S. A TGA/DTA-MS investigation to the influence of process conditions on the pyrolysis of Jimsar oil shale. Energy, 2015, 86, 749–757.

11.    Abourriche, A. K., Oumam, M., Hannache, H., Birot, M., Abouliatim, Y., Benhammou, A., El Hafiane, Y., Abourriche, A. M., Pailler, R., Naslain, R. Comparative studies on the yield and quality of oils extracted from Moroccan oil shale. J. Supercrit. Fluid., 2013, 84, 98–104.

12.    Al-Harahsheh, M., Al-Ayed, O., Robinson, J., Kingman, S., Al-Harahsheh, A., Tarawneh, K., Saeid, A., Barranco, R. Effect of demineralization and heating rate on the pyrolysis kinetics of Jordanian oil shales. Fuel Process. Technol., 2011, 92(9), 1805–1811.

13.    Tiikma, L., Johannes, I., Luik, H., Zaidentsal, A., Vink, N. Thermal dissolution of Estonian oil shale. J. Anal. Appl. Pyrol., 2009, 85(1–2), 502–507.

14.    Yanik, J., Yüksel, M., Sağlam, M., Olukçu, N., Bartle, K., Frere, B. Characterization of the oil fractions of shale oil obtained by pyrolysis and supercritical water extraction. Fuel, 1995, 74(1), 46–50.

15.    Lin, Y., Liao, Y., Yu, Z., Fang, S., Lin, Y., Fan, Y., Peng, X., Ma, X. Co-pyro­lysis kinetics of sewage sludge and oil shale thermal decomposition using TGA–FTIR analysis. Energ. Convers. Manage., 2016, 118, 345–352.

16.    Hu, Z., Ma, X., Li, L. The synergistic effect of co-pyrolysis of oil shale and microalgae to produce syngas. J. Energy Inst., 2016, 89(3), 447–455.

17.    Tiikma, L., Johannes, I., Luik, H., Gregor, A. Synergy in the hydrothermal pyro­lysis of oil shale/sawdust blends. J. Anal. Appl. Pyrol., 2016, 117, 247–256.

18.    Kılıç, M., Pütün, A. E., Uzun, B. B., Pütün, E., Converting of oil shale and bio­mass into liquid hydrocarbons via pyrolysis. Energ. Convers. Manage., 2014, 78, 461–467.

19.    Johannes, I., Tiikma, L., Luik, H. Synergy in co-pyrolysis of oil shale and pine sawdust in autoclaves. J. Anal. Appl. Pyrol., 2013, 104, 341–352.

20.    Aboulkas, A., Makayssi, T., Bilali, L., El harfi, K., Nadifiyine, M., Benchanaa, M. Co-pyrolysis of oil shale and High density polyethylene: Structural characterization of the oil. Fuel Process. Technol., 2012, 96, 203–208.

21.    Luik, H., Luik, L., Tiikma, L., Vink, N. Parallels between slow pyrolysis of Estonian oil shale and forest biomass residues. J. Anal. Appl. Pyrol., 2007, 79(1–2), 205–209.

22.    Allawzi, M., Al-Otoom, A., Allaboun, H., Ajlouni, A., Al Nseirat, F. CO2 super­critical fluid extraction of Jordanian oil shale utilizing different co-solvents. Fuel Process. Technol., 2011, 92(10), 2016–2023.

23.    Abourriche, A., Oumam, M., Hannache, H., Adil, A., Pailler, R., Naslain, R., Birot, M., Pillot, J.-P. Effect of toluene proportion on the yield and composition of oils obtained by supercritical extraction of Moroccan oil shale. J. Supercrit. Fluid., 2009, 51(1), 24–28.

24.    El harfi, K., Bennouna, C., Mokhlisse, A., Ben chanâa, M., Lemée, L., Joffre, J., Amblès, A. Supercritical fluid extraction of Moroccan (Timahdit) oil shale with water. J. Anal. Appl. Pyrol., 1999, 50(2), 163–174.

25.    Yang, Q., Qian, Y., Kraslawski, A., Zhou, H., Yang, S. Advanced exergy analysis of an oil shale retorting process. Appl. Energ., 2016, 165, 405–415.

26.    Chen, B., Han, X., Li, Q., Jiang, X. Study of the thermal conversions of organic carbon of Huadian oil shale during pyrolysis. Energ. Convers. Manage., 2016, 127, 284–292.

27.    Hascakir, B., Babadagli, T, Akin, S. Experimental and numerical simulation of oil recovery from oil shales by electrical heating. Energ. Fuel., 2008, 22, 3976–3985.

28.    Sınag, A., Canel, M. Comparison of retorting and supercritical extraction techniques on gaining liquid products from Göynük oil shale (Turkey). Energ. Source., 2004, 26(8), 739–749.

29.    Tucker, J. D., Masri, B., Lee, S. A comparison of retorting and supercritical extraction techniques on El-Lajjun oil shale. Energ. Source., 2000, 22(5), 453–463.

30.    Hepbaslı, A. Oil shale as an alternative energy source. Energ. Source., 2004, 26(2), 107–118.

31.    Altun, N. E., Hiçyılmaz, C., Hwang, J.-Y., Bağcı, A. S., Kök, M. V. Oil shales in the world and Turkey; reserves, current situation and future prospects: a review. Oil Shale, 2006, 23(3), 211–227.

32.    Ekinci, E. Turkish oil shales potential for synthetic crude oil and carbon material production. International Conference on Oil Shale: “Recent Trends in Oil Shale”, 7–9 November 2006, Amman, Jordan, Paper No. rtos-A123.

33.    Şengüler, İ., Kara-Gülbay, R., Korkmaz, S. Organic geochemical characteristics of Miocene oil shale deposits in the Eskişehir Basin, western Anatolia, Turkey. Oil Shale, 2014, 31(4), 315–336.

34.    Metecan, İ. H., Sağlam, M., Yanık, J., Ballice, L., Yüksel, M. Effect of pyrite catalyst on the hydroliquefaction of Göynük (Turkey) oil shale in the presence of toluene. Fuel, 1999, 78(5), 619–622.

35.    Olukcu, N., Yanik, J., Saglam, M., Yuksel, M. Liquefaction of Beypazari oil shale by pyrolysis. J. Anal. Appl. Pyrol., 2002, 64(1), 29–41.

36.    Ballice, L. Effect of demineralization on yield and composition of the volatile products evolved from temperature-programmed pyrolysis of Beypazari (Turkey) oil shale. Fuel Process. Technol., 2005, 86(6), 673–690.

37.    Karaca, H., Ceylan, K., Olcay, A. Catalytic dissolution of two Turkish lignites in tetralin under nitrogen atmosphere: effects of the extraction parameters on the conversion. Fuel, 2001, 80(4), 559–564.

38.    Rodriguez, I. M., Chomon, M. J., Caballero, B., Arias, P. L, Legarreta, J. A. Liquefaction behaviour of a Spanish subbituminous A coal under different conditions of hydrogen availability. Fuel Process. Technol., 1998, 58(1), 17–24.

39.    Wang, Z., Shui, H., Zhang, D., Gao, J. A comparison of FeS, FeS+S and solid superacid catalytic properties for coal hydro-liquefaction. Fuel, 2007, 86(5–6), 835–842.

40.    Shui, H., Chen, Z., Wang, Z., Zhang, D. Kinetics of Shenhua coal liquefaction catalyzed by SO42-/ZrO2 solid acid. Fuel, 2010, 89(1), 67–72.

41.    Ishak, M. A. M., Ismail, K., Abdullah, M. F., Kadir, M. O. A., Mohamed, A. R., Abdullah, W. H. Liquefaction studies of low-rank Malaysian coal using high-pressure high-temperature batch-wise reactor. Coal Prep., 2005, 25(4), 221–237.

42.    Rafiqul, I., Lugang, B., Yan, Y., Li, T. Study on co-liquefaction of coal and bagasse by factorial experiment design method. Fuel Process. Technol., 2000, 68(1), 3–12.

Abnisa, F., Daud, W. M. A. W. A review on co-pyrolysis of biomass: An optional technique to obtain a high-grade pyrolysis oil. Energ. Convers. Manage., 2014, 87, 71–85.

Back to Issue