ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2020): 0.934

VARIABLE ACTIVATION ENERGY PRINCIPLE TO MODEL OIL SHALE PYROLYSIS KINETICS; pp. 181–194

Full article in PDF format | https//doi.org/10.3176/oil.2017.2.07

Authors
OMAR SALIM AL-AYED, MOHAMMAD WALEED AMER, MOHAMMED MATOUQ

Abstract

The oil shale (OS) sample from Sultani mine, southern Jordan, was subjected to thermogravimetric/differential thermogravimetric (TG/DTG) and differential scanning calorimetry (DSC) analysis. Analysis was used to determine the kinetic parameters in the 300–540 °C temperature range, employing different heating rates (3, 5, 10, 20, 30 °C/min). The first order con­version function was found to best represent the oil shale pyrolysis kinetics. The data in the studied pyrolysis temperature range was divided into three zones according to the behavior of the quantity ln(dx/dT/(1–x)) vs 1/T(K). In the first linear zone, the apparent activation energy and frequency factor were found to be in the range of 63.1–94.2 kJ/mol and 9.3E+3–5.03E+6, respectively. In the second zone of analysis, the apparent activation energy was found to be negative and varied between –25.8 and –2.13 kJ/mol and the corresponding frequency factor was in the range of 19.65–0.00098. In the third zone under study, the calculated apparent activa­tion energy and frequency factors were in the range of 186.9–342.1 kJ/mol and 1.87E+12–1.46E+23, respectively.


References

 1.       Charlesworth, J. M. Oil shale pyrolysis. 2. Kinetics and mechanism of hydro­carbon evolution. Ind. Eng. Chem. Proc. Des. Dev., 1985, 24(4), 1125–1132.
https://doi.org/10.1021/i200031a038

2.       Skala, D., Kopsch, H., Sokić, M., Neumann, H. J., Jovanović, J. A. Kinetics and modelling of oil shale pyrolysis. Fuel, 1990, 69(4), 490–496.
https://doi.org/10.1016/0016-2361(90)90320-P

3.       Johannes, I., Kruusement, K., Veski, R. Evaluation of oil potential and pyrolysis kinetics of renewable fuel and shale samples by Rock-Eval analyzer. J. Anal. Appl. Pyrol., 2007, 79(1–2), 183–190.
https://doi.org/10.1016/j.jaap.2006.12.001

4.       Al-Ayed, O. S., Matouq, M., Anbar, Z., Khaleel, A. M., Abu-Nameh, E. Oil shale pyrolysis kinetics and variable activation energy principle. Appl. Energ., 2010, 87(4), 1269–1272.
https://doi.org/10.1016/j.apenergy.2009.06.020

5.       Tiwari, P., Deo, M. Detailed kinetic analysis of oil shale pyrolysis TGA data. AIChE J., 2012, 58(2), 505–515.
https://doi.org/10.1002/aic.12589

6.       Li, S., Yue, C. Study of pyrolysis kinetics of oil shale. Fuel, 2003, 82(3), 337–342.
https://doi.org/10.1016/S0016-2361(02)00268-5

7.       Al-Ayed, O. S. Variable reaction order for kinetic modeling of oil shale pyrolysis. Oil Shale, 2011, 28(2), 296–308.
https://doi.org/10.3176/oil.2011.2.04

8.       Torrente, M. C., Galan, M. A. Kinetics of the thermal decomposition of oil shale from Puertollano (Spain). Fuel, 2001, 80(3), 327–334.
https://doi.org/10.1016/S0016-2361(00)00101-0

9.       Al-Harahsheh, M., Al-Ayed, O., Robinson, J., Kingman, S., Al-Harahsheh, A., Tarawneh, K., Saeid, A., Barranco, R. Effect of demineralization and heating rate on the pyrolysis kinetics of Jordanian oil shales. Fuel Process. Technol., 2011, 92(9), 1805–1811.
https://doi.org/10.1016/j.fuproc.2011.04.037

10.    Pan, L., Dai, F., Huang, J., Liu, S., Li, G. Study of the effect of mineral matters on the thermal decomposition of Jimsar oil shale using TG-MS. Thermochim. Acta, 2016, 627–629, 31–38.
https://doi.org/10.1016/j.tca.2016.01.013

11.    Coats, A. W., Redfern, J. P. Kinetic parameters from thermogravimetric data. Nature, 1964, 201(4914), 68–69.
https://doi.org/10.1038/201068a0

12.    Flynn, J. H., Wall, L. A. Initial kinetic parameters from thermogravimetric rate and conversion data. J. Polym. Sci. Part C: Polym. Lett., 1967, 5(2), 191–196.
https://doi.org/10.1002/pol.1967.110050211

13.    Ozawa, T. Estimation of activation energy by isoconversion methods. Thermo­chim. Acta., 1992, 203, 159–165.
https://doi.org/10.1016/0040-6031(92)85192-X

14.    Kissinger, H. E. Reaction kinetics in differential thermal analysis. Anal. Chem., 1957, 29(11), 1702–1706.
https://doi.org/10.1021/ac60131a045

15.    Greenwood, P. F., George, S. C. Mass spectral characteristics of C19 and C20 tricylcic terpanes detected in Latrobe Tasmanite oil shale. Eur. J. Mass Spectrom., 1999, 5(3), 221–230.
https://doi.org/10.1255/ejms.278

16.    Tiwari, P., Deo, M. Compositional and kinetic analysis of oil shale pyrolysis using TGA-MS. Fuel, 2012, 94, 333–341.
https://doi.org/10.1016/j.fuel.2011.09.018

17.    Campbell, J. H., Koskinas, G. J., Gallegos, G., Gregg, M. Gas evolution during oil shale pyrolysis. 1. Nonisothermal rate measurements. Fuel, 1980, 59(10), 718–726.
https://doi.org/10.1016/0016-2361(80)90027-7

18.    Braun, R. L., Rothman, A. J. Oil-shale pyrolysis: kinetics and mechanism of oil production. Fuel, 1975, 54(2), 129–131.
https://doi.org/10.1016/0016-2361(75)90069-1

19.    Han, H., Zhong, N. N., Huang, C. X., Zhang, W. Pyrolysis kinetics of oil shale from northeast China: Implications from thermogravimetric and Rock-Eval experiments. Fuel, 2015, 159, 776–783.
https://doi.org/10.1016/j.fuel.2015.07.052

20.    Pan, L., Dai, F., Li, G., Liu, S. A TGA/DTA-MS investigation to the influence of process conditions on the pyrolysis of Jimsar oil shale. Energy, 2015, 86, 749–757.
https://doi.org/10.1016/j.energy.2015.04.081

21.    Mozurkewich, M., Benson, S. W. Negative activation energies and curved Arrhenius plots. 1. Theory of reactions over potential wells. J. Phys. Chem.-US, 1984, 88(25), 6429–6435.

22.    Revell, L. E., Williamson, B. E. Why are some reactions slower at higher temperatures? J. Chem. Educ., 2013, 90(8), 1024–1027.
https://doi.org/10.1021/ed400086w

23.    Strausz, O. P., Connor, J., Van Roodselaar, A., Fair, R. W. Addition of group VIa atoms to tetramethylethylene. Addition reaction with a negative activation energy. J. Am. Chem. Soc., 1971, 93(2), 560–562.
https://doi.org/10.1021/ja00731a064

24.    Cunningham, D. A. H., Vogel, W., Haruta, M. Negative activation energies in CO oxidation over an icosahedral Au/Mg(OH)2 catalyst. Catal. Lett., 1999, 63(1), 43–47.
https://doi.org/10.1023/A:1019088131252

25.    Han, X., Lee, R., Chen, T., Luo, J., Lu, Y., Huang, K. W. Kinetic evidence of an apparent negative activation enthalpy in an organocatalytic process. Sci. Rep., 2013, 3, Article number 2557.
https://doi.org/10.1038/srep02557

26.    Logan, S. R. Fundamentals of Chemical Kinetics. Longman: Harlow, England, 1996, 49–50.

27.    Braun, R. L., Rothman, A. J. Oil-shale pyrolysis: kinetics and mechanism of oil production. Fuel, 1975, 54(2), 129–131.
https://doi.org/10.1016/0016-2361(75)90069-1

28.    Al-Ayed, O. S., Al-Harahsheh, A., Khaleel, A. M., Al-Harahsheh, M. Oil shale pyrolysis in fixed-bed retort with different heating rates. Oil Shale, 2009, 26(2), 139–147.
https://doi.org/10.3176/oil.2009.2.06

29.    Orr, W. L. Kerogen/asphaltene/sulfur relationships in sulfur-rich Monterey oils. Org. Geochem., 1986, 10(1–3), 499–516.
https://doi.org/10.1016/0146-6380(86)90049-5

Eglinton, T. I., Sinninghe Damsté, J. S., Kohnen, M. E. L., de Leeuw, J. W., Larter, S. R., Patience, R. L. Analysis of maturity-related changes in the organic sulfur composition of kerogens by flash pyrolysis-gas chromatography. In: Geo­chemistry of Sulfur in Fossil Fuels (Orr, W. L., White, C. M., eds.), ACS Symposium Series, 429. Washington DC, 1990, 529–565.
https://doi.org/10.1021/bk-1990-0429.ch027


Back to Issue