ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2020): 0.934

ORGANIC GEOCHEMISTRY OF THE PALEOCENE-EOCENE OIL SHALES OF THE GONGJUE FORMATION, NANGQIAN BASIN, EAST-CENTRAL TIBETAN PLATEAU; pp. 1–14

Full article in PDF format | https://doi.org/10.3176/oil.2017.1.01

Authors
ZHAOLIN QI, YALIN LI, CHENGSHAN WANG, TAO SUN, JINHU ZHANG

Abstract

The Paleocene-Eocene oil shales of the Gongjue Formation in the Nangqian Basin, east-central Tibetan Plateau, were investigated for their petroleum potential by analysis of organic matter (OM) type, source, rich­ness, thermal maturity, and depositional environment. According to the Tmax and molecular indicators, the samples were found to be thermally immature or at the early stages of maturity. The hydrogen index (HI) values and atomic ratios of carbon, hydrogen and oxygen show that the organic matter of oil shales is primarily of Type I or II. The high share of gammacerane and the low pristane-to-phytane (Pr/Ph) ratio indicate that the organic matter was deposited in saline paleoenvironmental settings.


References

1.         Wang, C., Zhang, S. Preliminary analysis of petroliferous basins and oil-gas prospects in Qinghai-Xizang (Tibet) plateau. Earth Science, 1996, 21, 120–129 (in Chinese with English abstract).

2.         Klemme, H. D., Ulmishek, G. F. Effective petroleum source rocks of the world: stratigraphic distribution and controlling depositional factors. Am. Assoc. Petr. Geol. B., 1991, 75(12), 1809–1851.

3.         Gu, Y., Shao, Z., Ye, D., Zhang, X., Lu, Y. Characteristics of source rocks and resource prospect in the Lunpola Basin, Tibet. Petroleum Geology & Experi­ment, 1999, 21, 340–345 (in Chinese with English abstract).

4.         Han, Z., Xu, M., Li, Y., Wei, Y., Wang, C. Paleocene-Eocene potential source rocks in the Avengco Basin, Tibet: Organic geochemical characteristics and their implication for the paleoenvironment. J. Asian Earth Sci., 2014, 93, 60–73.
https://doi.org/10.1016/j.jseaes.2014.06.027

5.         Fu, X., Wang, J., Zeng, Y., Li, Z., Wang, Z. Geochemical and palynological investigation of the Shengli River marine oil shale (China): Implications for paleoenvironment and paleoclimate. Int. J. Coal Geol., 2009, 78(3), 217–224.
https://doi.org/10.1016/j.coal.2009.02.001

6.         Yang, R., Cao, J., Hu, G., Fu, X. Organic geochemistry and petrology of Lower Cretaceous black shales in the Qiangtang Basin, Tibet: Implications for hydrocarbon potential. Org. Geochem., 2015, 86, 55–70.
https://doi.org/10.1016/j.orggeochem.2015.06.006

7.         Zhou, J., Wang, J., Yin, A., Spurlin, M. S., Horton, B. K. Depositional patterns and tectonic setting of early Tertiary basins in the NE margin of the Tibetan Plateau: A case study of the Nangqian and Xialaxiu basins. Acta Sedimento­logica Sinica, 2002, 20(1), 85–91 (in Chinese with English abstract).

8.         Horton, B. K., Yin, A, Spurlin, M. S., Zhou, J, Wang, J. Paleocene-Eocene syncontractional sedimentation in narrow, lacustrine-dominated basins of east-central Tibet. Geol. Soc. Am. Bull., 2002, 114(7), 771–786.
https://doi.org/10.1130/0016-7606(2002)114<0771:PESSIN>2.0.CO;2

9.         Du, H., Jiang, Y, Yan, Z., Hou, Z., Yang, T., Guo, F., Yang, Q. Sedimentary characteristics and environment of the Paleogene Nangqian basin in Qianghai Province. Acta Geologica Sinica, 2011, 85, 383–395 (in Chinese with English abstract).

10.      Spurlin, M. S., Yin, A., Horton, B. K., Zhou, J., Wang, J. Structural evolution of the Yushu-Nangqian region and its relationship to syncollisional igneous activity, east-central Tibet. Geol. Soc. Am. Bull., 2005, 117(9/10), 1293–1317.
https://doi.org/10.1130/B25572.1

11.      Deng, W., Sun, H., Zhang, Y. Petrogenesis of Cenozoic potassic volcanic rocks in Nangqian Basin. Chinese Journal of Geology, 2001, 36(3), 304–318 (in Chinese with English abstract).

12.      Zhu, L., Zhang, H., Wang, J., Zhou, J., Xie, G. 40Ar/39Ar chronology of high-K magmatic rocks in Nangqian basins at the northern segment of the Jinsha-Red River shear zone. Geotectonica et Metallogenia, 2006, 30, 241–247 (in Chinese with English abstract).

13.      Chen, M., Cheng, Y., Li, W. Exploitation and utilization of oil shale in the coal measure strata of the Haishiwan mine, Yaojie coalfield, China. Oil Shale, 2015, 32(4), 335–355.
https://doi.org/10.3176/oil.2015.4.04

14.      Brendow, K. Global oil shale issues and perspectives (Synthesis of the Symposium on Oil Shale held in Tallinn (Estonia) on 18 and 19 November 2002). Oil Shale, 2003, 20(1), 81–92.

15.      Yang, D., Wang, P. The determinations of plateau age by 40Ar/39Ar dating on Cenozoic calc-alkalic trachytes of Nangqen Basin, northern transverse mountains. In: Contribution to the Geology of the Qinghai-Xizang (Tibet) Plateau. Geological Publishing House, Beijing, 1988, 19, 9–44 (in Chinese with English abstract).

16.      Deng, J., Wang, Q., Li, G., Santosh, M. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Sci. Rev, 2014, 138, 268–299.
https://doi.org/10.1016/j.earscirev.2014.05.015

17.      Tibet BGMR [Tibet Bureau of Geology and Mineral Resources]. Geologic map of the Nangqian, Changdu, Jiangda region, with geologic report (1:250 000 scale), 2007.

18.      Wei, M. Eogene ostracods from Nangqen in Qinghai. In: Contribution to the Geology of the Qinghai-Xizang (Tibet) Plateau. Geological Publishing House, Beijing, 1985, 17, 313–324 (in Chinese with English abstract).

19.      Wang, L., Wang, C., Li, Y., Zhu, L., Wei, Y. Sedimentary and organic geo­chemical investigation of tertiary lacustrine oil shale in the central Tibetan plateau: Palaeolimnological and palaeoclimatic significances. Int. J. Coal Geol., 2011, 86(2), 254–265.
https://doi.org/10.1016/j.coal.2011.02.011

20.      Peters, K. E., Walters, C. C., Moldowan, J. M. The Biomarker Guide Volume 2: Biomarkers and Isotopes in Petroleum Exploration and Earth History, 2nd ed. Cambridge University Press, 2005.

21.      Ten Haven, H. L., De Leeuw, J. W., Sinninghe Damsté, J. S., Schenck, P. A., Palmer, S. E., Zumberge, J. E. Application of biological markers in the recognition of palaeohypersaline environments. Geol. Soc. Spec. Publ., 1988, 40, 123–130.
https://doi.org/10.1144/GSL.SP.1988.040.01.11

22.      Seifert, W. K., Moldowan, J. M. The effect of thermal stress on source-rock quality as measured by hopane stereochemistry. Phys. Chem. Earth, 1980, 12, 229–237.
https://doi.org/10.1016/0079-1946(79)90107-1

23.      Kara-Gülbay, R., Korkmaz, S. Occurrences and origin of oils and asphaltites from South East Anatolia (Turkey): Implications from organic geochemistry. J. Petrol. Sci. Eng., 2012, 90, 145–158.
https://doi.org/10.1016/j.petrol.2012.04.014

24.      Tissot, B., Durand, B., Espitalie, J., Combaz, A. Influence of nature and dia­genesis of organic matter in formation of petroleum. Am. Assoc. Petr. Geol. B., 1974, 58(3), 499–506.

25.      Grimalt, J., Albaigés, J. Sources and occurrence of C12–C22 n-alkane distribu­tions with even carbon-number preference in sedimentary environments. Geochim. Cosmochim. Ac., 1987, 51(6), 1379–1384.
https://doi.org/10.1016/0016-7037(87)90322-X

26.      Bourbonniere, R. A., Meyers, P. A. Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie. Limnol. Oceanogr., 1996, 41(2), 352–359.
https://doi.org/10.4319/lo.1996.41.2.0352

27.      Seifert, W. K., Moldowan, M. J. Applications of steranes, terpanes and mono­aromatics to the maturation, migration and source of crude oils. Geochim. Cosmochim. Ac., 1978, 42(1), 77–95.
https://doi.org/10.1016/0016-7037(78)90219-3

28.      Huang, W., Meinschein, W. G. Sterols as ecological indicators. Geochim. Cosmochim. Ac., 1979, 43(5), 739–745.
https://doi.org/10.1016/0016-7037(79)90257-6

29.      Ding, W., Wan, H., Zhang,  Y., Han, G. Characteristics of the Middle Jurassic marine source rocks and prediction of favorable source rock kitchens in the Qiangtang Basin of Tibet. J. Asian Earth Sci, 2013, 66, 63–72.
https://doi.org/10.1016/j.jseaes.2012.12.025

30.      Wang, J., Ding, J., Wang, C., Tan, F. Investigation and Assessment of Oil and Gas Resources in the Tibetan Plateau. Geological Publishing House, Beijing, 2009 (in Chinese).

31.      Powell, T. G., McKirdy, D. M. Relationship between ratio of pristane to phytane, crude oil composition and geological environment in Australia. Nature, 1973, 243, 37–39.
https://doi.org/10.1038/physci243037a0

32.      Didyk, B. M., Simoneit, B. R. T., Brassell, S. C., Eglinton, G. Organic geo­chemical indicators of palaeoenvnonmental conditions of sedimentation. Nature, 1978, 272, 216–222.
https://doi.org/10.1038/272216a0

33.      Ten Haven, H. L., De Leeuw, J. W., Rullkötter, J, Sinninghe Damsté, J. S. Restricted utility of the pristane/phytane ratio as a palaeoenvironmental indicator. Nature, 1987, 330, 641–643.
https://doi.org/10.1038/330641a0

34.      Wang, T., Zhong, N., Hou, D., Bao, J., Huang, G., Li, X. Several genetic mechanisms of immature crude oils in China. Acta Sedimentologica Sinica, 1997, 15(2), 75–83 (in Chinese with English abstract).

35.      Moldowan, J. M., Seifert, W. K., Gallegos, E. J. Relationship between petroleum composition and depositional environment of petroleum source rocks. Am. Assoc. Petr. Geol. B., 1985, 69(8), 1255–1268.

36.      Fu, J., Sheng, G., Peng, P., Brassell, S. C., Eglinton, G., Jiang, J. Peculiarities of salt lake sediments as potential source rocks in China. Org. Geochem., 1986, 10(1), 119–126.

Sinninghe Damsté, J. S., Kenig, F., Koopmans, M. P., Köster, J, Schouten, S., Hayes, J., De Leeuw, J. W. Evidence for gammacerane as an indicator of water column stratification. Geochim. Cosmochim. Ac., 1995, 59(9), 1895–1900.
https://doi.org/10.1016/0016-7037(95)00073-9


Back to Issue