eesti teaduste
akadeemia kirjastus
SINCE 1984
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2021): 1.442
PDF | doi: 10.3176/oil.2016.3.03


In this paper, the Thermogravimetric Analysis-Fourier Transform Infrared Spectroscopy (TG-FTIR) technique is used to analyze the pyrolysis behavior of kerogen of two different oil shales at different heating rates. The pyro­lysis reaction mechanism of kerogen and the regularity of change in the composition of its pyrolysis products are discussed. Furthermore, the apparent activation energy (E) and the frequency factor (k0) are determined through the distributed activation energy model (DAEM), and the relation­ships between E and the kerogen chemical structure, conversion rate, frequency factor, and the amount of kerogen pyrolysis products generated are established. The results show that the kerogen structure is similar to that of aliphatic chains, its pyrolysis takes place mostly in the range of 350–520 °C, and the post-pyrolysis semicoke residue accounts for less than 32.5%. In the kerogen pyrolysis process, first the precipitation of free water takes place, followed by depolymerization and decarboxylation, so that the main alkyl side chains are constantly parting and cycling, and the oxygen-containing group gradually breaks up and produces substances such as alkanes, carboxylic acids, alcohols, and aldehydes until a more stable graphite-like structure of kerogen is formed. In the products of kerogen pyrolysis, the concentrations of released lightweight noncondensable volatiles (CH4, CO, CO2) are lower than those of liberated condensable volatiles containing macromolecules (e.g., CHx, C=O groups) that show the Gaussian-like distribution. The apparent activation energy in the two kinds of kerogen varies in the range of 100–495 kJ·mol–1. At the same time, during the entire pyrolysis system, the apparent activation energy and logarithm values of the frequency factor (lnk0) exhibit a good linear relationship. The study reveals the pyrolysis reaction mechanism of oil shale in terms of the relationship between the chemical structure of kerogen macromolecules and the degree of oil shale pyrolysis.


1.   Qian, J. L., Yin, L., Wang, J. Q. Oil Shale – Petroleum Alternative. China Petro­chemical Press, Beijing, 2008 (in Chinese).

2.   Ru, X., Cheng, Z. Q., Song, L. H., Wang, H. Y., Li, J. F. Experimental and computational studies on the average molecular structure of Chinese Huadian oil shale kerogen. J. Mol. Struct., 2012, 1030(51), 10–18.

3.   Marshall, C. P., Love, G. D., Snape, C. E., Hill, A. C., Allwood, A. C., Walter, M. R., Van Kranendonk, M. J., Bowden, S. A., Sylva, S. P., Summons, R. E. Structural characterization of kerogen in 3.4 Ga Archaean cherts from the Pilbara Craton, Western Australia. Precambrian Res., 2007, 155(1–2), 1–23.

4.   Coats, A. W., Redfern, J. P. Kinetic parameters from thermogravimetric data. Nature, 1964, 201, 68–69.

5.   Lin, T., Goos, E., Riedel, U. A sectional approach for biomass: Modelling the pyrolysis of cellulose. Fuel Process. Technol., 2013, 115, 246–253.

6.   Starink, M. J. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermo­chim. Acta, 2003, 404(1–2), 163–176.

7.   Friedman, H. L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J. Polym. Sci. Part C, 1964, 6(1), 183–195.

8.   Wang, Q., Wang, H., Sun, B., Bai, J., Guan, X. Interactions between oil shale and its semi-coke during co-combustion. Fuel, 2009, 88(8), 1520–1529.

9.   Vand, V. A theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum. P. Phys. Soc., 1943, 55(3), 222–246.

10. Miura, K., Maki, T. A simple method for estimating f(E) and k0(E) in the distributed activation energy model. Energ. Fuel., 1998, 12(5), 864–869.

11. Güneş, M., Güneş, S. K. Distributed activation energy model parameters of some Turkish coals. Energ. Source. Part A, 2008, 30(16), 1460–1472.

12. Hillier, J. L., Fletcher, T. H. Pyrolysis kinetics of a Green River oil shale using a pressurized TGA. Energ. Fuel., 2011, 25(1), 232–239.

13. Meng, A., Zhou, H., Qin, L., Zhang, Y., Li, Q. Quantitative and kinetic TG-FTIR investigation on three kinds of biomass pyrolysis. J. Anal. Appl. Pyrol., 2013, 104, 28–37.

14. Bai, F., Sun, Y., Liu, Y., Li, Q., Guo, M. Thermal and kinetic characteristics of pyrolysis and combustion of three oil shales. Energ. Convers. Manage., 2015, 97, 374–381.

15. Liu, X. Q., Li, W., Li, B. Q. A new theoretical approach to the distributed activation energy model under isothermal conditions and its application. Journal of Fuel Chemistry & Technology, 2002, 30(3), 214–217(in Chinese).

16. Solomon, P. R., Carangelo, R. M. FT-i.r. analysis of coal: 2. Aliphatic and aromatic hydrogen concentration. Fuel, 1988, 67(7), 949–959.

17. Wang, Q., Xu, X. C., Chi, M. S., Zhang, H. X., Cui, D., Bai, J. R. FT-IR study on composition of oil shale kerogen and its pyrolysis oil generation cha­racteristics. Journal of Fuel Chemistry and Technology, 2015, 43(10), 1158–1166 (in Chinese).

18. Tong, J., Han, X., Wang, S., Jiang, X. Evaluation of structural characteristics of Huadian oil shale kerogen using direct techniques (solid-state 13C NMR, XPS, FT-IR, and XRD). Energ. Fuel., 2011, 25(9), 4006–4013.

19. Miknis, F. P., Lindner, A. W., Gannon, A. J., Davis, M. F., Maciel, G. E. Solid state 13C NMR studies of selected oil shales from Queensland, Australia. Org. Geochem., 1984, 7(3–4), 239–248.

20. Hashimoto, K., Miura, K., Watanabe, T. Kinetics of thermal regeneration reaction of activated carbons used in waste water treatment. AICHE J., 1982, 28(5), 737–746.

21. Williams, P. T., Ahmad, N. Investigation of oil-shale pyrolysis processing con­ditions using thermogravimetric analysis. Appl. Energ., 2000, 66(2), 113–133.

22. Miura, K. A new and simple method to estimate f(E) and k0(E) in the distributed activation energy model from three sets of experimental dataEnerg. Fuel., 1995, 9(2), 302–307.

23. Chen, L. G., Tun, H. C., Cen, G. F. Quantitative research of evolved gas rate by TGA-FTIR. Journal of Zhejiang University (Engineering Science), 2009, 43(7), 1332–1336 (in Chinese).

24. Wang, Y., Alimjan, A. Comprehensive Analysis of Spectrum Guide. Chemical Industry Press, Beijing, 2008 (in Chinese).

25. Fu, J. M., Qin, K. Z. Kerogen Geochemistry. Guangdong Science and Techno­logy Press, Guangzhou, 1995 (in Chinese).

26. Guan, X. H., Liu, Y., Wang, D., Wang, Q., Chi, M. S., Liu, S., Liu, C. G. Three-dimensional structure of a Huadian oil shale kerogen model: An experimental and theoretical study. Energ. Fuel., 2015, 29(7), 4122–4136.

27. Yan, J. W, Jiang, X. M., Han, X. X., Liu, J. G. A TG-FTIR investigation to the catalytic effect of mineral matrix in oil shale on the pyrolysis and combustion of kerogen. Fuel, 2013, 104, 307–317.

28. Wang, H., Jiang, X. M., Yuan, D. Q., Wan, P. Pyrolysis of coal water slurry volatile matter by using FG-DVC model. Journal of Chemical Industry & Engineering, 2006, 57(10), 2428–2432 (in Chinese).

29. Wang, Q., Yan, Y. H., Jia, C. X., Zhu, Y. C. FTIR analysis and pyrolysis cha­racteristics of oil shale from Gansu province. Chemical Industry & Engineering Progress, 2014, 33(7), 1730–1734 (in Chinese).

30. Scaccia, S. TG–FTIR and kinetics of devolatilization of Sulcis coal. J. Anal. Appl. Pyrol., 2013, 104, 95–102.

31. Wang, S. H., Griffiths, P. R. Resolution enhancement of diffuse reflectance i.r. spectra of coals by Fourier self-deconvolution: 1. C-H stretching and bending modes. Fuel, 1985, 64(2), 229–236.

32.       Starink, M. J. Activation energy determination for linear heating experiments: deviations due to neglecting the low temperature end of the temperature integral. J. Mater. Sci., 2007, 42(2), 483–489.

Back to Issue