eesti teaduste
akadeemia kirjastus
SINCE 1984
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2021): 1.442
PDF | doi: 10.3176/oil.2016.3.05


In this study, a 23 full factorial design methodology was applied to study the effect of three process input variables, namely ash content (30 and 50 wt%), pressing pressure (120 and 150 MPa) and heat treatment tem­perature (900 and 1050 oC) on the characteristics of ceramics. The ceramics specimens were prepared from oil shale ash and waste glass by pressing followed by heat treatment. The oil shale was obtained from El-Lajjun region in Jordan. Three response variables were chosen to investigate the process variables of interest. The response variables were water absorption, chemical absorption and bending strength.
   It was found that higher heat treatment temperatures are favored to obtain ceramics with lower water absorption, lower chemical absorption and higher bending strength. The main effects of ash content and pressing pressure on the characteristics of ceramics were found to be shared by interaction effects. The factorial design methodology revealed the interaction and its effect among process input variables on the characteristics of ceramics.
   Ceramics with minimum water absorption (7.7%), minimum chemical absorp­tion (9%) and bending strength (41 MPa) were obtained based on the following optimized conditions: 30 wt% ash content, 120 MPa pressing pressure and 1050 oC heat treatment temperature.


1.      Mehta, P. K. Concrete technology for sustainable development – an overview of essential elements. In: Concrete Technology for a Sustainable Development in the 21st Century (Gjorv, O. E., Sakai, K., eds.), E & FN Spon, New York, 2000, 86.

2.      Al-Harahsheh, A., Al-Otoom, A., Al-Harahsheh, M., Allawzi, M., Al-Adamat, R., Al-Farajat, M., Al-Ayed, O. The leachability propensity of El-Lajjun Jordanian oil shale ash. Jordan Journal of Earth and Environmental Sciences (JJEES), ISSN 1995-6681, 2012, 4(S2), 29–34.

3.      Enefit-Jordan. Oil Shale Fired Power Plant. power-plant (accessed April 14, 2015).

4.      Al-Otoom, A. Y., Shawabkeh, R. A., Al-Harahsheh, A. M., Shawaqfeh, A. T. The chemistry of minerals obtained from the combustion of Jordanian oil shale. Energy, 2005, 30(5), 611–619.

5.      Abdul Hadi, N. A., Khoury, H., Kharabsheh, M. Utilization of bituminous limestone ash from El-Lajjun area for engineering applications. International Conference on Oil Shale: “Recent Trends in Oil Shale”, 7–9 November 2006, Amman, Jordan, paper no. rtos-A116.

6.      Al-Otoom, A. A thermodynamics study on the utilization of Jordanian oil shale in cement industry. International Conference on Oil Shale: “Recent Trends in Oil Shale”, 7–9 November 2006, Amman, Jordan, paper no. rtos-A119.

7.      Shawabkeh, R., Al-Harahsheh, A., Hami, M., Khlaifat, A. Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater. Fuel, 2004, 83(7–8), 981–985.

8.      Al-Hasan, M. Behavior of concrete made using oil shale ash and cement mixtures. Oil Shale, 2006, 23(2), 135–143.

9.      Al-Hamaiedh, H., Maaitah, O., Mahadin, S. Using oil shale ash in concrete binder. Electronic Journal of Geotechnical Engineering (EJGE), 2010, 15, 601–608.

10. Ghuzlan, K., Al-Khateeb, G., Abu Damrah, A. Using oil shale ash waste as a modifier for asphalt binders. J. Mater. Cycles Waste Manag., 2013, 15, 522–529, DOI 10.1007/s10163-013-0135-8.

11. Ashteyat, A. M., Haddad, R. H., Yamin, M. M. Production of self-compacting concrete using Jordanian oil shale ash. Jordan Journal of Civil Engineering, 2012, 6(2), 202–214.

12. Khedaywi, T., Al-Qadi, A. Effect of oil shale on fatigue performance of asphalt paving mixtures. Proceedings of ICCBT 2008, Kuala Lumpur, Malaysia, 16–20 June 2008, 301–314.

13. Hamadi, A., Nabih, K. Alkali activation of oil shale ash based ceramics. E-Journal of Chemistry, 2012, 9(3), 1373–1388.

14. Gorokhovskii, A. V., Gorokhovskii, V. A., Mescheryakov, D. V., Kopchek­chi, A. A. Glass-ceramics based on oil shale ash. Glass Ceram., 2002, 59, 191–193.

15. Luan, J., Li, A., Su, T., Cui, X. Synthesis of nucleated glass-ceramics using oil shale fly ash. J. Hazard. Mater., 2010, 173(1–3), 427–432.

16. Shawabkeh, R., Al-Harahsheh, A., Al-Otoom, A. Production of zeolite from Jordanian oil shale ash and application for zinc removal from wastewater. Oil Shale, 2004, 21(2), 125–136.

17. Al-Qodah, Z. Adsorption of dyes using shale oil ash. Water Res., 2000, 34(17), 4295–4303.

18. Al-Harahsheh, A. M., Shawabkeh, R. A., Al-Harahsheh, M. S, Batiha, M. M. Removal of sulfur dioxide by a slurry of Jordanian oil shale ash. Energ. Source, Part A, 2011, 34(1), 90–98.

19. Yoon, S.-D., Yun, Y.-H. Preparation of glass ceramics from sludge bottom ash and waste glass. J. Ceram. Process. Res., 2011, 12(4), 361–364.

20. Yoon, S.-D., Yun, Y.-H. Waste glass and fly ash derived glass-ceramic. J. Mater. Sci., 2006, 41(13), 4315–4319.

21. Yoon, S.-D., Lee, J.-U., Lee, J.-H., Yun, Y.-H., Yoon, W.-J. Characterization of wollastonite glass-ceramics made from waste glass and coal fly ash. J. Mater. Sci. Technol., 2013, 29(2), 149–153.

22. Box, G. E. P., Hunter, W. G., Hunter, J. S. Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building. John Wiley and Sons Inc., 1978.

23. Dondi, M., Raimondo, M., Zanelli, C. Clays and bodies for ceramic tiles: reappraisal and technological classification. Appl. Clay Sci., 2014, 96, 91–109.

24. Antony, J. Design of Experiments for Engineers and Scientists. Elsevier Science & Technology, 2003.

25. Monteiro, R. C. C., Lima, M. M. R. A., Alves, S. Mechanical characteristics of clay structural ceramics containing coal fly ash. Int. J. Mech. Mater. Des., 2008, 4(2), 213–220.

26. Angjusheva, B., Fidancevska, E., Jovanov, V. Production of ceramics from coal fly ash. Chem. Ind. Chem. Eng. Q., 2012, 18(2), 245–254.

Characteristics in Standard EN 14411. Institut de Promoció Ceràmica, (accessed April 14, 2015).

Back to Issue