eesti teaduste
akadeemia kirjastus
SINCE 1984
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2021): 1.442
PDF | doi: 10.3176/oil.2016.1.04


A numerical simulation of in situ conversion of continental oil shale in Northeast China was performed. Firstly, the transient temperature field of in situ conversion was calculated. Secondly, the apparent kinetic parameters from thermogravimetric experiments on continental oil shale were obtained. At last, the transformation rates of oil shale at different heating times were calculated applying apparent kinetic parameters to the heating rate obtained in the first step. The results demonstrated that continental oil shale needs to be heated for about 6–8 years to enable its conversion more than 90% under in situ retorting.


  1. UN Oil Shale and Tar Sands Panel. Final Report of the Technical Panel on Oil Shale and Tar Sands. A/Conf. 100/PC/26, United Nations General Assembly, Geneva, 1981.

  2. Peters, K. E., Walters, C. C., Moldowan, J. M. The Biomarker Guide. Second edition. Cambridge University Press, Cambridge, 2005.

  3. Dyni, J. R. Geology and resources of some world oil-shale deposits. Oil Shale, 2003, 20(3), 193–252.

  4. Tissot, B. P., Welte, D. H. Petroleum Formation and Occurrence. Second edition. Springer Verlag, Germany, 1984.

  5. Altun, N. E., Hicyilmaz, C., Hwang, J.-Y., Bagci, A. S. Evaluation of a Turkish low quality oil shale by flotation as a clean energy source: material cha­racterization and determination of flotation behavior. Fuel Process. Technol., 2006, 87(9), 783–791.

  6. Zhang, F., Parker, J. C. An efficient modeling approach to simulate heat trans­fer rate between fracture and matrix regions for oil shale retorting. Transport Porous Med., 2010, 84(1), 229–240.

  7. Crawford, P. M., Biglarbigi, K., Dammer, A. R., Knaus, E. Advances in world oil shale production technologies. In: SPE Annual Technical Conference and Exhibition (ATCE 2008), September 21–24, 2008 Denver, Colorado, USA, vol. 6, SPE 116570, 4101–4111.

  8. Yang, H., Gao, X., Xiong, F., Zhang, J., Li, Y. Temperature distribution simula­tion and optimization design of electric heater for in-situ oil shale heating. Oil Shale, 2014, 31(2), 105–120.

  9. Harold, J. Heat sources with conductive material for in situ thermal processing of an oil shale formation. United States Patent, 6929067. 2005-08-16.

10. George, J. H., Harris, H. G. Mathematical modeling of in situ oil shale retorting. SIAM J. Numer. Anal., 1977, 14(1), 137–151.

11. Gregg, M. L., Cambell, J. H., Taylor, J. R. Laboratory and modelling investi­gation of a Colorado oil-shale block heated to 900 °C. Fuel, 1981, 60(3), 179–188.

12. Campbell, J. H., Gallegos, G., Gregg, M. Gas evolution during oil shale pyro­lysis. 2. Kinetic and stoichiometric analysis. Fuel, 1980, 59(10), 727–732.

13. Braun, R. L., Diaz, J. C., Lewis, A. E. Results of mathematical modeling of modified in-situ oil shale retorting. Soc. Petrol. Eng. J., 1984, 24(01), 75–86.

14. Parker, J. C., Zhang, F. Efficient formulations of heat and mass transfer in oil shale retort models. 26th Oil Shale Symposium, Colorado School of Mines, 16–19 October 2006, Colorado, USA.

15. Symington, W. A., Spiecker, P. M. Heat conduction modeling tools for screen­ing in situ oil shale conversion processes. 28th Oil Shale Symposium, Colorado School of Mines, October 13–15, 2008, Colorado, USA.

16. Fan, Y., Durlofsky, L. J., Tchelepi, H. Numerical simulation of the in-situ upgrading of oil shale. SPE Reservoir Simulation Symposium, The Woodlands, Texas, USA, 2–4 February 2009, SPE Paper 118658, Texas, 2009.

17. Wellington, S. L., Berchenko, I. E., Rouffignac, E. P., Fowler, T. D., Ryan, R. C., Gordon Jr., T. S., Stegemeier, G. L., Vinegar, H. J., Zhang, E. In situ thermal processing of an oil shale formation to produce a desired product. US Patent, 2003/0136558 A1. 2003-07-24.

18. Kang, Zhi-qin, Zhao, Yang-sheng, Yang, Dong. Physical principle and numerical analysis of oil shale development using in-situ conversion process technology. Acta Petrolei Sinica, 2008, 29(4), 592–595 (in Chinese).

19. Liu, Z., Meng, Q., Jia, J., Sun, P., Liu, R., Hu, X. Metallogenic regularity of oil shale in continental basin: case study in the Meso-Cenozoic basins of Northeast China. Journal of Jilin University, Earth Science Edition, 2012, 42(5), 1286–1297 (in Chinese).

20. Liu, R. Research on Oil Shale Characteristics and Metallogenic Mechanism of Cenozoic Fault Basins in Eastern Northeast Region. PhD Thesis, Changchun: Jilin University, 2007 (in Chinese).

21. Ungerer, P., Pelet, R. Extrapolation of the kinetics of oil and gas formation from laboratory experiments to sedimentary basins. Nature, 1987, 327, 52–54.

22. Tissot, B. P., Pelet, R., Ungerer, P. Thermal history of sedimentary basins, maturation indices, and kinetics of oil and gas generation. AAPG Bull., 1987, 71, 1445–1466.

23. Johannes, I., Zaidentsal, A. Kinetics of low-temperature retorting of kukersite oil shale. Oil Shale, 2008, 25(4), 412–425.

24. Li, S., Yue, C. Study of different kinetic models for oil shale pyrolysis. Fuel Process. Technol., 2003, 85(1), 51–61.

25. Li, S., Yue, C. Study of pyrolysis kinetics of oil shale. Fuel, 2003, 82(3), 337–342.

26. Johannes, I., Kruusement, K., Veski, R. Evaluation of oil potential and pyrolysis kinetics of renewable fuel and shale samples by Rock-Eval analyzer. J. Anal. Appl. Pyrol., 2007, 79(1–2), 183–190.

27. Xue, H., Li, S., Wang, H., Zheng, D., Fang, C. Pyrolysis kinetics of oil shale from northern Songliao basin in China. Oil Shale, 2010, 27(1), 5–16.

Back to Issue