eesti teaduste
akadeemia kirjastus
SINCE 1984
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2021): 1.442
PDF | doi: 10.3176/oil.2016.1.07


Estonia is strongly dependent on locally mined oil shale which is the main fuel for power and oil production. Vast amounts of solid wastes are formed from circulating fluidized bed (CFB), pulverized firing (PF), and solid heat carrier (SHC) technologies, and are currently wet deposited in open-air fields. Both the utilization of newly produced ash and the manage­ment of historical deposits require an accurate thermo­dynamic modelling of complex mixtures. The authors investigated the leach­ing of the main water-soluble Ca-compounds from three types of oil shale mineral waste and developed a kinetic model that was used to determine the equilibrium constants and kinetic parameters of dissolution reactions for all three ash-water systems over a wide range of solid-to-liquid (S/L) ratio. For this, we prepared binary (Ca(OH)2-CaSO4∙2H2O-H2O) and ternary (Ca(OH)2-CaSO4∙2H2O-CaS-H2O) model systems that reflect the composition of the three different ashes, and measured the kinetics of dissolution for both the model systems and industrial ash. Thermodynamic calculations were per­formed using HsC Chemistry® 7.1 and Aspen Plus V8.6 while the leaching kinetics was simulated employing the MODEST 6.1 software package. By comparing the results obtained for our model systems with those obtained for industrial oil shale ash-water systems the authors were able to both verify that the model results coincided to a satisfactory degree with simulation data, and also propose models that may aid one to design shale ash processing technologies.


  1. Ots, A. Oil Shale Fuel Combustion. Tallinna Raamatutrükikoda, Tallinn, 2006.

  2. Bauert, H., Kattai, V. Kukersite oil shale. In: Geology and Mineral Resources of Estonia (Raukas, A., Teedumäe, A., eds.). Estonian Academy Publishers, Tallinn, 1997, 313–327.

  3. Kuusik, R., Uibu, M., Kirsimäe, K. Characterization of oil shale ashes formed at industrial-scale CFBC boilers. Oil Shale, 2005, 22(4S), 407–419.

  4. Bityukova, L., Mõtlep, R., Kirsimäe, K. Composition of oil shale ashes from pulverized firing and circulating fluidized-bed boiler in Narva Thermal Power Plants, Estonia. Oil Shale, 2010, 27(4), 339–353.

  5. Kuusik, R., Uibu, M., Kirsimäe, K., Mõtlep, R., Meriste, T. Open-air deposition of Estonian oil shale ash: formation, state of art, problems and prospects for the abatement of environmental impact. Oil Shale, 2012, 29(4), 376–403.

  6. Kattai, V., Saadre, T., Savitski, L. Estonian Oil Shale: Geology, Resource, Mining Conditions. Geological Survey of Estonia, Tallinn, 2000, 226 pp (in Estonian).

  7. Golubev, N. Solid oil shale heat carrier technology for oil shale retorting. Oil Shale, 2003, 20(3S), 324–332.

  8. Reinik, J., Irha, N., Steinnes, E., Piirisalu, E., Aruoja, V., Schultz, E., Leppä­nen, M. Characterization of water extracts of oil shale retorting residues form gaseous and solid heat carrier processes. Fuel Process. Technol., 2015, 131, 443–451.

  9. Talviste, P., Sedman, A., Mõtlep, R., Kirsimäe, K. Self-cementing properties of oil shale solid heat carrier retorting residue. Waste Manage. Res., 2013, 31(6), 641‑647.

10. Eesti Energia Annual Report 2014. concern/annual_report_2014_eng.pdf (accessed in August 2015).

11. VKG Yearbook 2014. Viru Keemia Grupp. juhatus/vkg-aastaraamat-eng-2014.pdf (accessed in August 2015).

12. VKG Yearbook 2013. Viru Keemia Grupp. juhatus/vkg-aastaraamat-eng-2013.pdf (accessed in August 2015).

13. Uibu, M., Uus, M., Kuusik, R. CO2 mineral sequestration in oil-shale wastes from Estonian power production. J. Environ. Manage., 2009, 90(2), 1253–1260.

14. Sanna, A., Uibu, M., Caramanna, G., Kuusik, R., Maroto-Valer, M. M. A review of mineral carbonation technologies to sequester CO2. Chem. Soc. Rev., 2014, 43, 8049‑8080.

15. Velts, O., Uibu, M., Kallas, J., Kuusik, R. Waste oil shale ash as a novel source of calcium for precipitated calcium carbonate: carbonation mechanism, model­ing, and product characterization. J. Hazard. Mater., 2011, 195, 139–146.

16. Velts, O., Uibu, M., Kallas, J., Kuusik, R. CO2 mineralisation: concept for co-utilization of oil shale energetics waste streams in CaCO3 production. Energy Procedia, 2013, 37, 5912–5928.

17. Reispere, H. J., Determination of free CaO content in oil shale ash. Transact. Tallinn Polytechnical Institute, series A, 1966, No 245, 73–76 (in Estonian).

18. EVS 664:1995. Solid Fuels. Sulphur content. Determination of total sulphur and its bonding forms.

19. APHA - American Public Health Association, American Water Works Association, Water Environment Federation. Standard methods for examination of water and wastewater, 21st ed., Washington DC, USA, 2005, 1368.

20. Külaots, I., Goldfarb, J., L., Suuberg, E., M. Characterization of Chinese, American and Estonian oil shale semicokes and their sorptive potential. Fuel, 2010, 89, 3300‑3306.

21. Tamm, K., Kuusik, R., Uibu, M., Kallas, J. Transformations of sulfides during aqueous carbonation of oil shale ash. Energy Procedia, 2013, 37, 5905–5912.

22. Velts, O., Uibu, M., Rudjak, I., Kallas, J., Kuusik, R. Utilization of oil shale ash to prepare PCC: Leachability dynamics and equilibrium in the ash-water system. Energy Procedia, 2009, 1(1), 4843–4850.

23. ISO-6058:1984. Water quality – Determination of calcium content – EDTA titrimetric method.

24. EKUK Virumaa Affiliate Kohta-Järve Laboratory of Chemistry. The quality procedure guide TJ 17 – Determination of sulfide in water, 2002.

25. ISO-9963-1:1994. Water quality – Determination of alkalinity – Part 1: Determina­tion of total and composite alkalinity.

26. Ritchie, I. M., Bing-An, X. The kinetics of lime slaking. Hydrometallurgy, 1990, 23(2-3), 377–396.

27. Sun, W., Nešić, S., Young, D., Woollam, R. C. Equilibrium expressions related to the solubility of the sour corrosion product mackinawite. Ind. Eng. Chem. Res., 2008, 47(5), 1738–1742.

28. Almgren, T., Dyrssen, D., Elgquist, B., Johansson, O. Dissociation of hydrogen sulphide in seawater and comparison of pH scales. Mar. Chem., 1976, 4(3), 289–297.

29. Tamm, K., Uibu, M., Kallas, J., Kallaste, P., Velts-Jänes, O., Kuusik, R. Thermo­dynamic and kinetic study of CaS in aqueous systems. Fuel Process. Technol., 2016, 142, 242–249.

30. Irha, N., Uibu, M., Jefimova, J., Raado, L.-M., Hain T., Kuusik, R., Leaching behaviour of Estonian oil shale ash-based construction mortars. Oil Shale, 2014, 31(4), 394–411.

31. Tamm, K., Kuusik, R., Uibu, M., Kallas, J. Transformations of sulfur com­pounds in oil shale ash suspension. In: Waste Management and the Environment VI: 6th International Conference on Waste Management and the Environment, New Forest, UK, 04.–06.07.2012 (Popov, V., Itoh, H., Brebbia, C. A., eds.). Wessex Institute of Technology Press, (WIT Transactions on Ecology and the Environment), 2012, 163.

32. Tamm, K., Kuusik, R., Uibu, M., Kallas, J. Behaviour of sulfur compounds during aqueous leaching of oil shale ash. In: Proc. 4th Int. Conf. on Accelerated Carbonation for Environmental and Materials Engineering ACEME 2013, Leuven, Belgium, 9–12 April 2013 (Nasser, R., Santos, R., Cizer, Ö., Van Gerven, T., eds.). Leuven, 2013, 541–544.

33. Aavik, J. Characterization of oil shale ash leachate for optimizing the pre­cipitation of calcium carbonate. Master’s Degree, Tallinn University of Technology, 2011 (in Estonian).

34. Johannsen, K., Rademacher, S. Modelling the kinetics of calcium hydroxide dissolution in water. Acta Hydroch. Hydrob., 1999, 27(2), 72–78.<72::AID-AHEH72>3.3.CO;2-8

35. Giles, D. E., Ritchie, I. M., Xu, B.-A. The kinetics of dissolution of slaked lime. Hydrometallurgy, 1993, 32(1), 119–128.

36. Mölder, L., Elenurm, A., Tamvelius, H. Sulphur compounds in a hydraulic ash-disposal system. Proc. Estonian Acad. Sci. Chem., 1995, 44(2/3), 207–211.

37. Velts, O., Hautaniemi, M., Kallas, J., Kuusik, R. Modeling calcium dissolution from oil shale ash: Part 1. Ca dissolution during ash washing in a batch reactor. Fuel Process. Technol., 2010, 91(5), 486–490.

38. Velts, O., Hautaniemi, M., Kallas, J., Kuosa, M, Kuusik, R. Modeling calcium dissolution from oil shale ash: Part 2. Continuous washing of the ash layer. Fuel Process. Technol., 2010, 91(5), 491–495.

39. Haario, H. Modest User’s Manual. Profmath OY, Helsinki, Finland, 1994.

40. Hindmarsh, A. C. ODEPACK, a systematized collection of ODE solvers. In: Scientific Computing: IMACS Transactions on Scientific Computation (Steple­man, R. S. et al., eds.), North-Holland, Amsterdam, 1983, 1, 55–64.

41. Uibu, M., Tamm, K., Velts-Jänes, O., Kallaste, P., Kuusik, R., Kallas, J. Utiliza­tion of oil shale combustion wastes for PCC production: Quantifying the kinetics of Ca(OH)2 and CaSO4·2H2O dissolution in aqueous systems. Fuel Process. Technol., 2015, 140, 156–164.

Back to Issue