eesti teaduste
akadeemia kirjastus
SINCE 1984
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2020): 0.934


Full article in PDF format | doi: 10.3176/oil.2015.4.04



Oil shale, a kind of energy source, is an important alternative to petroleum. Considering the Haishiwan mine of the Yaojie coalfield, China, as a typical study case, an exploitation and utilization system for oil shale was investigated. The system consists of oil shale mining and comprehensive utilization. Haishiwan oil shale has developed in a paragenetic relationship with humic coal in coal measure strata. Underground mining technology is applied to the oil shale seam. The exploitation and utilization system for Haishiwan oil shale has a great significance for two reasons. On the one hand, combined with gas drainage technology, the mining of the oil shale seam can eliminate the risk of coal and gas outburst from the underlying coal seam in a particular area and ensure the safe mining of the coal seam. Thus the economic value of this thin oil shale seam is improved. On the other hand, the mined oil shale can be fully made use of by a comprehensive utilization technology. The latter includes oil shale retorting, combustion of semicoke, fine oil shale and fuel gases for power generation, and utilization of ashes for production of composite cement and other building materials. The industrial chain for oil shale exploitation and utilization established in the Yaojie coalfield is highly significant for maximizing the utility of resources and reducing environmental pollution.


  1. International Energy Agency. Key World Energy Statistics, 2014. Available at

  2. Na, J. G., Im, C. H., Chung, S. H., Lee, K. B. Effect of oil shale retorting temperature on shale oil yield and properties. Fuel, 2012, 95, 131–135.

  3. British Petroleum (BP), 2014. BP Statistical Review of World Energy, June 2014. Available at

  4. Zhang, Y., Zhang, J. Y., Yang, Z. F., Li, J. Analysis of the distribution and evolution of energy supply and demand centers of gravity in China. Energ. Policy, 2012, 49, 695–706.

  5. National Bureau of Statistics of the People's Republic of China. China Stastistical Yearbook 2013. China Statistics Press, Beijing, 2013.

  6. Liu, Z. J., Dong, Q. S., Ye, S. Q., Zhu, J. W., Guo, W., Li, D. С., Liu, R., Zhang, H. L., Du, J. F. The situation of oil shale resource in China. Journal of Jilin University (Earth Science Edition), 2006, 36(6), 869–876 (in Chinese).

  7. Liu, Z. J., Yang, H. L., Dong, Q. S., Zhu, J. W., Guo, W., Ye, S. Q., Liu, R., Meng, Q. T., Zhang, H. L., Gan, S. C. Oil Shale in China. Petroleum Industry Press, Beijing, 2009 (in Chinese).

  8. Qian, J. L. Oil Shale - Petroleum Alternative. China Petrochemical Press, Beijing, 2010.

  9. Li, S. Y., Geng, C. C., Qian, J. L. Global oil shale exploration, development and utilization today – Two oil shale symposiums held in 2013. Sino-Global Energy, 2014, 19(1), 25–33 (in Chinese).

10. Oh, K., Tiwari, P., Deo, M. Evaluation of various shale processing options. Oil Shale, 2010, 27(3), 229–238.

11. Qian, J. L., Li, S. Y., Guo, S. H., Ding, F. C. Oil Shale Retorting Process. China Petrochemical Press, Beijing, 2014 (in Chinese).

12. Zhou, C. L. General description of Fushun oil shale retorting factory in China. Oil Shale, 1996, 13(1), 7–11.

13. He, Y. G. Mining and utilization of Chinese Fushun oil shale. Oil Shale, 2004, 21(3), 259–264.

14. Soone, J., Doilov, S. Sustainable utilization of oil shale resources and com­parison of contemporary technologies used for oil shale processing. Oil Shale, 2003, 20(3S), 311–323.

15. Öpik, I., Golubev, N., Kaidalov, A., Kann, J., Elenurm, A. Current status of oil shale processing in solid heat carrier UTT (Galoter) retorts in Estonia. Oil Shale, 2001, 18(2), 99–107.

16. Martignoni, W. P., Bachmann, D. L., Stoppa, E. F., Rodriques, W. J. B. Petrosix oil shale technology learning curve. In: Abstracts of Symposium on Oil Shale, Tallinn, Estonia, 18–21 November 2002, 30.

17. Schmidt, S. J. New directions for shale oil: path to a secure new oil supply well into this century (on the example of Australia). Oil Shale, 2003, 20(3S), 333–346.

18. Adamson, J., Irha, N., Adamson, K., Steinnes, E., Kirso, U. Effect of oil shale ash application on leaching behavior of arable soils: an experimental study. Oil Shale, 2010, 27(3), 250–257.

19. Raado, L.-M., Kuusik, R., Hain, T., Uibu, M., Somelar, P. Oil shale ash based stone formation – hydration, hardening dynamics and phase transfromations. Oil Shale, 2014, 31(1), 91–101.

20. Hilger, J. Combined utilization of oil shale energy and oil shale minerals within the production of cement and other hydraulic binders. Oil Shale, 2003, 20(3S), 347–355.

21. You, J. J., Ye, S. Q., Liu, Z. J., Wang, Y. Z. Comprehensive development and utilization of oil shale. Global Geology, 2004, 23(3), 261–265 (in Chinese).

22. Sun, J., Wang, Q., Sun, D. H., Li, S. H., Sun, B. Z., Bai, J. R. Integrated technology for oil shale comprehensive utilization and cycling economy. Modern Electric Power, 2007, 24(5), 57–67 (in Chinese).

23. Jiang, X. M., Han, X. X., Cui, Z. G. New technology for the comprehensive utilization of Chinese oil shale resources. Energy, 2007, 32(5), 772–777.

24. Wang, S., Jiang, X. M., Han, X. X., Tong, J. H. Investigation of Chinese oil shale resources comprehensive utilization performance. Energy, 2012, 42(1), 224–232.

25. Loosaar, J., Arro, H., Parve, T., Pihu, T., Prikk, A., Tiikma, T., Hiltunen, M. New 215 MWEL CFB power units for Estonian oil shale. In: 18th International Conference on Fluidized Bed Combustion, Toronto, Canada, May 22–25, 2005. Paper No. FBC2005-78141, pp 153–160.

26. Hotta, A., Parkkonen, R., Hiltunen, M., Arro, H., Loosaar, J., Parve, T., Pihu, T., Prikk, A., Tiikma, T. Experience of Estonian oil shale combustion based on CFB technology at Narva Power Plants. Oil Shale, 2005, 22(4S), 381–398.

27. Ots, A., Poobus, A., Lausmaa, T. Technical and ecological aspects of shale oil and power cogeneration. Oil Shale, 2011, 28(1S), 101–112.

28. Han, X. X., Jiang, X. M., Wang, H., Cui, Z. G. Study on design of Huadian oil shale-fired circulating fluidized bed boiler. Fuel Process. Technol., 2006, 87(4), 289–295.

29. Liblik, V., Kaasik, M., Pensa, M., Rätsep, A., Rull, E., Tordik, A. Reduction of sulphur dioxide emissions and transboundary effects of oil shale based energy production. Oil Shale, 2006, 23(1), 29–38.

30. Arro, H., Prikk, A., Pihu, T. Calculation of CO2 emission from CFB boilers of oil shale power plants. Oil Shale, 2006, 23(4), 356–365.

31. Pihu, T., Arro, H., Prikk, A., Rootamm, R., Konist, A., Kirsimäe, K., Liira, M., Mõtlep, R. Oil shale CFBC ash cementation properties in ash fields. Fuel, 2012, 93, 172–180.

32. Raado, L.-M., Tuisk, T., Rosenberg, M., Hain, T. Durability behavior of Port­land burnt oil shale cement concrete. Oil Shale, 2011, 28(4), 507–515.

33. Raado, L.-M., Hain, T., Liisma, E., Kuusik, R. Composition and properties of oil shale ash concrete. Oil Shale, 2014, 31(2), 147–160.

34. Velts, O., Uibu, M., Rudjak, I., Kallas, J., Kuusik, R. Utilization of oil shale ash to prepare PCC: leachibility dynamics and equilibrium in the ash-water system. Energy Procedia, 2009, 1(1), 4843–4850.

35. Velts, O., Uibu, M., Kallas, J., Kuusik, R. Waste oil shale ash as a novel source of calcium for precipitated calcium carbonate: Carbonation mechanism, model­ing, and product characterization. J. Hazard. Mater., 2011, 195, 139–146.

36. Luan, J. D., Li, A. M., Su, T., Cui, X. B. Synthesis of nucleated glass-ceramics using oil shale fly ash. J. Hazard. Mater., 2010, 173(1–3), 427–432.

37. Marangoni, M., Ponsot, I., Kuusik, R., Bernardo, E. Strong and chemically inert sinter crystallised glass ceramics based on Estonian oil shale ash. Adv. Appl. Ceram., 2014, 113(2), 120–128.

38. Al-Qodah, Z., Shawaqfeh, A. T., Lafi, W. K. Adsorption of pesticides from aqueous solutions using oil shale ash. Desalination, 2007, 208(1–3), 294–305.

39. An, B. C., Wang, W. Y., Ji, G. J., Gan, S. C., Gao, G. M., Xu, J. J., Li, G. H. Preparation of nano-sized α-Al2O3 from oil shale ash. Energy, 2010, 35(1), 45–49.

40. Väli, E., Valgma, I., Reinsalu, E. Usage of Estonian oil shale. Oil Shale, 2008, 25(2S), 101–114.

41. Cao, Z. B., Zhang, Z. P., Han, D. Y., Li, D. D. Oil Shale Retorting Technology and Engineering. China Petrochemical Press, Beijing, 2011 (in Chinese).

42. Lu, D. W., Li, Y., Liu, H. Y., Li, Z. X., Wang, D. D., Liu, Y., Wang, P. L. Coal and oil shale paragenetic mineralization system. Coal Geology of China, 2015, 27(2), 1–5 (in Chinese).

43. Hodot, B. B. Coal and Gas Outbursts (Chinese translation). China Coal Industry Press, Beijing, 1966.

44. Yu, Q. X. Control of Coal Mine Gas. China University of Mining and Technology Press, Xuzhou, 1992 (in Chinese).

45. Cheng, Y. P., Wang, H. F., Wang, L., Zhou, H. X., Liu, H. Y., Liu, H. B., Wu, D. M., Li, W. Theories and Engineering Applications on Coal Mine Gas Control. China University of Mining and Technology Press, Xuzhou, 2010 (in Chinese).

46. Cheng, Y. P., Yu, Q. X. Development of regional gas control technology for Chinese coalmines. Journal of Mining & Safety Engineering, 2007, 24(4), 383–390 (in Chinese).

47. Wei, P. S., Zhang, H. Q., Chen, Q. L., Yuan, J. Y., Zhang, J. L. The Accumula­tion Mechanism of Multi-Energy Mineral Deposits Coexisting in Minhe Basin. Petroleum Industry Press, Beijing, 2007 (in Chinese).

48. Tao, M. X., Chen, F. Y., Xu, Y. C. The evolution and structural characteristics of Yaojie F19 fracture zone. Coal Geology of China, 1995, 7(3), 12–16 (in Chinese).

49. Li, W., Cheng, Y. P., Wang, L. The origin and formation of CO2 gas pools in the coal seam of the Yaojie coalfield in China. Int. J. Coal Geol., 2011, 85(2), 227–236.

50. Guo, W., Liu, Z. J., Song, Y. Q., Li, C. B., Su, F. Genetic type and features of oil shale in the Minhe basin, Qinghai-Gansu provinces, China. Geological Bulletin of China, 2009, 28(6), 780–786 (in Chinese).

51. Song, Y. Q., Guo, W., Liu, Z. J., Wang, Q. B., Wang, H. Y. Sedimentary environ­mental analysis and exploration perspective forecasting of oil shale in Yaojie Coal Field, Minhe Basin. Global Geology, 2006, 25(1), 43–48 (in Chinese).

52. Johannes, I., Luik, H., Bojesen-Koefoed, J. A., Tiikma, L., Vink, N., Luik, L. Effect of organic matter content and type of mineral matter on the oil yield from oil shales. Oil Shale, 2012, 29(3), 206–221.

53. Shi, Y. Y., Li, S. Y, Ma, Y., Yue, C. T., Shang, W. Z., Hu, H. Q., He, J. L. Pyrolysis of Yaojie oil shale in a Sanjiang-type pilot-scale retort. Oil Shale, 2012, 29(4), 368–375.

54. Wang, J., Liang, J., Wang, Z., Lin, W. G., Song, W. L. Effects of temperature on the flash pyrolysis of oil shale. Coal Conversion, 2010, 33(1), 65–68 (in Chinese).

55. Wang, S., Jiang, X. M., Han, X. X., Tong, J. H. Effect of retorting temperature on product yield and characteristics of non-condensable gases and shale oil obtained by retorting Huadian oil shales. Fuel Process. Technol., 2014, 121, 9–15.

56. Williams, P. T., Ahmad, N. Influence of process conditions on the pyrolysis of Pakistani oil shales. Fuel, 1999, 78(6), 653–662.

57. Jaber, J. O., Probert, S. D.,Williams, P. T. Evaluation of oil yield from Jordanian oil shales. Energy, 1999, 24(9), 761–781.

58. Han, X. X., Jiang, X. M., Cui, Z. G. Studies of the effect of retorting factors on the yield of shale oil for a new comprehensive utilization technology of oil shale. Appl. Energ., 2009, 86(11), 2381–2385.

59. Tao, S., Tang, D. Z., Xu, H., Cai, J. L., Gou, M. F., Chen, Z. L. Retorting properties of oil shale found at the Northern foot of Bogda Mountain, China. Oil Shale, 2011, 28(1), 19–28.

60. Johannes, I., Zaidentsal, A. Kinetics of low-temperature retorting of kukersite oil shale. Oil Shale, 2008, 25(4), 412–425.

61. Yue, C. T., Liu, Y., Ma, Y., Li, S. Y., He, J. L., Qiu, D. K. Influence of retorting conditions on the pyrolysis of Yaojie oil shale. Oil Shale, 2014, 31(1), 66–78.

62. Cheng, Y. P., Zhou, D. Y., Yu, Q. X., Zhou, H. X., Wang, H. F. Research on extraction and emission laws of gas for pressure-relief in protecting coal seams. Journal of Mining & Safety Engineering, 2006, 23(1), 12–18 (in Chinese).

63. Wang, H. F., Cheng, Y. P., Wu, D. M., Liu, H. Y. Gas emission and parameter optimization of gas extraction in mining face of short distance protective seam. Journal of China Coal Society, 2010, 35(4), 590–594 (in Chinese).

64. Li, W., Cheng, Y. P., Guo, P. K., An, F. H., Chen, M. Y. The evolution of permeability and gas composition during remote protective longwall mining and stress-relief gas drainage: a case study of the underground Haishiwan Coal Mine. Geosciences Journal, 2014, 18(4),427–437.

65. Jiang, X. M., Han, X. X., Cui, Z. G. Research on oil shale comprehensive utilization technology. Progress in Natural Science, 2005, 15(11), 1342–1345 (in Chinese).

66. Li, S. Y., Qian, J. L. Development and utilization of world oil shale – Two oil shale symposiums held in 2010. Sino-Global Energy, 2011, 16(1), 8–18 (in Chinese).

67. Sun, J. X., Huang, C., Duan, Y. H. Application of SJ rectangular retort furnace in processing Yaojie oil shale. Sino-Global Energy, 2010, 15(12), 80–83 (in Chinese).

68. Tian, J. A., Sun, J. X., Tang, Z. Y., Chen, G. R. Research and application of comprehensive utilizaton of exhausted gas from high gas outburst coal mine and exhausted emission from oil shale refining. China Coal, 2011, (8), 110–113 (in Chinese).

69. Kuusik, R., Uibu, M., Kirsimäe, K. Characterization of oil shale ashes formed at industrial-scale CFBC boilers. Oil Shale, 2005, 22(4S), 407–419.

70. Akar, A., Ekinci, E. Production of chemicals from oil shales. Fuel, 1995, 74(8), 1113–1117.

71. Fainberg, V., Hetsroni, G., Feiglin, T., Schwartz, A. High-sulfur shale oil as a component of rubber stocks. Oil Shale, 1997, 14(2), 133–142.

Back to Issue