eesti teaduste
akadeemia kirjastus
SINCE 1984
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2020): 0.934


Full article in PDF format | doi: 10.3176/oil.2015.3.03



A short overview of the previous works concerning oil extraction from Jordanian oil shale is presented. The results of the systematic experi­mental study obtained in this work on the effects of temperature (320–420 °C) and exposure time (0–10 h) at nominal temperature on the yield of pyrolysis products from Attarat oil shale generated in autoclaves without any solvent and in the presence of benzene, water and tetralin are described. The yields of solid residue, gas, pyrolytic water and subsequent extracts with benzene (thermobitumen and oil (TBO) including asphaltenes and hexane solubles) and tetrahydrofurane (asphaltols) were estimated. The compound groups of TBO were assessed. The highest yield of TBO, 59.4% of organic matter (OM), was obtained at a temperature of 420 °C and duration 0.25 h. The 20% lower yield of TBO from Jordanian oil shale OM in comparison with that from Estonian Kukersite OM is explained by close values of the apparent kinetic constants estimated for the overall decomposition of the Attarat oil shale OM, and for the secondary decomposition of TBO.


  1. Hrayshat, E. S. Oil shale – an alternative energy source for Jordan. Energ. Source. Part A, 2008, 30(20), 1915–1920.

  2. Alali, J. Jordan oil shale, availability, distribution and investment opportunity. Int. Oil Shale Conf. “Recent Trends in Oil Shale”, Amman, Jordan, 7–9 Nov. 2006, paper no. rtos-A117.

  3. Dyni, J. R. Geology and Resources of Some World Oil-Shale Deposits. Scientific Investigations Report 2005–5294. U.S. Department of the Interior, U.S. Geological Survey, 2005, 18–21. sir5294_508.pdf. Retrieved 2014-10-14.

  4. Amer, M. W., Marshall, M., Fei, Y., Jackson, W. R., Gorbaty, M. L., Cassidy, P. J., Chaffee, A. L. A comparison of the structure and reactivity of five Jordanian oil shales from different locations. Fuel, 2014, 119, 313–322.

  5. Al-Otoom, A. Y. An investigation into beneficiation of Jordanian El-Lajjun oil shale by froth flotation. Oil Shale, 2008, 25(2), 247–253.

  6. Al-Harasheh, A. M. The effect of a solvent system on the yield and fractional composition of bitumen extracted from the El-lajjun and Sultani oil shale deposits. Energ. Source. Part A, 2011, 33(7), 665–673.

  7. Shawaqfeh, A. T., Al-Harasheh, A. Solvation of Jordanian oil shale using different organic solvents by continuous contact mixing. Energ. Source., 2004, 26(14), 1321–1330.

  8. Guo, S. Solvent extraction of Jordanian oil shale kerogen. Oil Shale, 2000, 17(3), 266–270.

  9. Matouq, M., Koda, S., Maricela, T., Omar, A., Tagawa, T. Solvent extraction of bitumen from Jordan oil shale assisted by low frequency ultrasound. J. Jap. Petr. Inst., 2009, 52(5), 265–269.

10. Matouq, M., Alayed, O. Combined process of solvent extraction and gamma-ray radiation for the extraction of oil from oil shale. Energ. Source. Part A, 2007, 29(16), 1471–1476.

11. Bsieso, M. S. Jordan’s experience in oil shale studies employing different technologies. Oil Shale, 2003, 20(3S), 360–370.

12. Johannes, I., Luik, H., Bojesen-Koefoed, J. A., Tiikma, L., Vink, N., Luik, L. Effect of organic matter content and type of mineral matter on the oil yield from oil shales. Oil Shale, 2012, 29(3), 206–221.

13. Jaber, J. O., Probert, S. D., Williams, P. T. Evaluation of oil yield from Jordanian oil shales. Energy, 1999, 24(9), 761–781.

14. Nazzal, J. M. Influence of heating rate on the pyrolysis of Jordan oil shale. J. Anal. Appl. Pyrol., 2002, 62(2), 225–238.

15. Tucker, J. D., Masri, B., Lee, S. A comparison of retorting and supercritical extraction techniques on El-Lajjun oil shale. Energ. Source., 2000, 22(5), 453–463.

16. Al-Harahsheh, M., Al-Ayed, O., Robinson, J., Kingman, S., Al-Harahsheh. A., Tarawneh, K., Saeid, A., Barranco, R. Effect of demineralization and heating rate on the pyrolysis kinetics of Jordanian oil shales. Fuel Process. Technol., 2011, 92(9), 1805–1811.

17. Amer, M. W., Marshall, M., Fei, Y., Jackson, W. R., Gorbaty, M. L., Cassidy, P. J., Chaffee, A. L. Comparison of the yields and structure of fuels derived from freshwater algae (torbanite) and marine algae (El-Lajjun oil shale). Fuel, 2013, 105, 83–89.

18. Abu-Qudais, M., Jaber, J. O., Sawalha, S. Kinetics of pyrolysis of Attarat oil shale by thermogravimetry. Oil Shale, 2005, 22(1), 51–63.

19. Jaber, J. O., Probert, S. D. Non-isothermal thermogravimetry and decomposi­tion kinetics of two Jordanian oil shales under different processing conditions. Fuel Process. Technol., 2000, 63(1), 57–70.

20. Fei, Y., Marshall, M., Jackson, W. R., Gorbaty, M., L., Amer, M. W., Cassidy, P. J., Chaffee, A. L. Evaluation of several methods of extraction of oil from a Jordanian oil shale. Fuel, 2012, 92(1), 281–287.

21. Allawzi, M., Al-Otoom, A., Alloboun, H., Ajlouni, A., Al Nseirat, F. CO2 super­critical fluid extraction of Jordanian oil shale utilizing different co-solvents. Fuel Process. Technol., 2001, 92, 2016–2023.

22. Haddadin, R. A. A kinetic and mechanistic comparison for Jordan oil shale pyrolysis and dissolution. Fuel Process. Technol., 1982, 6(3), 235–243.

23. Nazzal, J. M., Williams, P. T. Influence of temperature and steam on the products from the flash pyrolysis of Jordan oil shale. Int. J. Energ. Res., 2002, 26(14), 1207–1219.

24. Yorudas, K.-A. A., Gavrilov, A. F. Study of the El-Lajjun (Jordan) oil shale and the products of its processing at the units with solid heat carrier. Oil Shale, 1999, 16(4S), 399–409.

25. Johannes, I., Tiikma, L., Zaidentsal, A. Comparison of the thermo­bituminiza­tion kinetics of Baltic oil shale in open retorts and autoclaves. Oil Shale, 2010, 27(1), 17–25.

26. Tiikma, L., Johannes, I., Luik, H., Zaidentsal, A., Vink, N. Thermal dissolution of Estonian oil shale. J. Anal. Appl. Pyrol., 2009, 85(1–2), 502–507.

27. Al-Ayed, O. S., Matouq, M., Anbar, Z., Khaleel, A. M., Abu-Nameh, E. Oil shale pyrolysis kinetics and variable activation energy principle. Appl. Energ., 2010, 87(4), 1269–1272.

28. Khraisha, Y. H. Kinetics of isothermal pyrolysis of Jordan oil shales. Energ. Convers. Manage., 1998, 39(3–4), 157–165.

29. Lille, Ü., Heinmaa, I., Pehk, T. Molecular model of Estonian kukersite kerogen evaluated by 13C MAS NMR spectra. Fuel, 2003, 82(7), 799–804.

Back to Issue