eesti teaduste
akadeemia kirjastus
SINCE 1984
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2020): 0.934


Full article in PDF format | doi: 10.3176/oil.2015.1.04



The Shengli River-Changshe Mountain oil shale zone represents the potentially largest marine oil shale resource in China. With the aim to have better knowledge of the distribution of trace elements in oil shale, and their behaviour during oil shale combustion and gasification, 28 raw Changliang Mountain oil shale and marl samples, 19 oil shale combustion residue samples and 23 samples of minerals isolated from Changliang Mountain oil shale are studied for trace element content. The oil shale samples from the Changshe Mountain area are characterized by high ash yield (54.69–86.75%) and total organic carbon (TOC) content (2.20–13.44%). The contents of Se, Mo, Cd, As, B, and Ni in raw oil shale samples are 3.78 to 28.44 times their upper continental crust values. The enrichment of an element in oil shale seams may be a function of that association and the origin of oil shale fractions.
   Some trace elements in the Changshe Mountain oil shale show susceptibility to release into the atmosphere, including about 93% Hg and 20–30% As, Ba, Be, Co, Cr, Nb, and Sc. The behaviour and migration of trace elements during oil shale combustion strongly depend on their mode of occurrence in the rock. Based on Pearson’s coefficients of correlation between elements, as well as cluster and isolated mineral analyses, the main modes of occurrence of trace elements in marine oil shale are distinguished: 1) clay mineral affined – B, Ba, Be, Cr, Cs, Ga, Hf, Li, Nb, Rb, Sc, Sn, Ta, Th, V, W, Zr, REEs; 2) organic affined – As, Mo, Se; 3) Fe-bearing mineral affined – Bi, Co, Cu, Ni, Pb, U; 4) calcite affined – Cd, Sr and 5) fossil affined – Cd, Zn.


  1. Dyni, J. R. Oil shale developments in the United States. Oil Shale, 2006, 23(2), 97–98.

  2. Wang, C. S., Zhang, S. M. The discovery of oil shale in the Shuanghu area, northern Tibet, China. Geology in China, 1987, 8, 29–31 (in Chinese).

  3. Fu, X. G., Wang, J., Tan, F. W., Zeng, Y. H. Sedimentological investigations of the Shengli River-Changshe Mountain oil shale (China): relationships with oil shale formation. Oil Shale, 2009, 26(3), 373–381.

  4. Fu, X. G., Wang, J., Zeng, Y. H., Tan, F. W., Feng, X. L. Source regions and the sedimentary paleoenvironment of marine oil shale from the Bilong Co area, northern Tibet, China: an Sr-Nd isotopic study. Oil Shale, 2012, 29(4), 306–321.

  5. Fu, X. G., Wang, J., Zeng, Y. H., Tan, F. W., Feng, X. L. REE geochemistry of marine oil shale from the Changshe Mountain area, northern Tibet, China. Int. J. Coal Geol., 2010, 81(3), 191–199.

  6. Izquierdo, M., Koukouzas, N., Touliou, S., Panopoulos, K. D., Querol, X., Itskos, G. Geochemical controls on leaching of lignite-fired combustion by-products from Greece. Appl. Geochem., 2011, 26(9–10), 1599–1606.

  7. Fu, X. G., Wang, J., Zeng, Y. H., Cheng, J., Tan, F. W. Origin and mode of occurrence of trace elements in marine oil shale from the Shengli River area, northern Tibet, China. Oil Shale, 2011, 28(4), 487–506.

  8. Fu, X. G., Wang, J., Tan, F. W., Chen, M., Chen, W. B. The Late Triassic rift-related volcanic rocks from eastern Qiangtang, northern Tibet (China): Age and tectonic implications. Gondwana Res., 2010, 17(1), 135–144.

  9. Yin, A., Harrison, T. M. Geologic evolution of the Himalayan-Tibetan Orogen. Annu. Rev. Earth Pl. Sc., 2000, 28, 211–280.

10. Kapp, P., Yin, A., Manning, C. E., Harrison, T. M., Taylor, M. H., Ding, L. Tectonic evolution of the early Mesozoic blueschist-bearing Qiangtang meta­morphic belt, central Tibet. Tectonics, 2003, 22(4), 1043.

11. Fu, X. G., Wang, J., Zeng, Y. H., Tan, F. W., Feng, X. L. Concentration and mode of occurrence of trace elements in marine oil shale from the Bilong Co area, northern Tibet, China. J. Coal Geol., 2011, 85(1), 112–122.

12. Fu, X. G., Wang, J., Qu, W. J., Duan, T. Z., Du, A. D., Wang, Z. J., Liu, H. Re-Os (ICP-MS) dating of marine oil shale in the Qiangtang basin, northern Tibet, China. Oil Shale, 2008, 25(1), 47–55.

13. Liu, Y., Liu, H. C., Li, X. H. Simultaneous precise determination of 40 trace elements in rock samples using ICP-MS. Geochimica, 1996, 25(6), 552–558 (in Chinese with English abstract).

14. Patterson, J. H., Ramsden, A. R., Dale, L. S., Fardy, J. J. Geochemistry and minera­logical residences of trace elements in oil shales from Julia Creek, Queens­land, Australia. Chem. Geol., 1986, 55(1–2), 1–16.

15. Taylor, S. R., McLennan, S. M. The geochemical evolution of the continental crust. Rev. Geophys., 1995, 33(2), 241–265.

16. Gluskoter, H. J., Ruch, R. R., Miller, W. G., Cahill, R. A., Dreher, G. B., Kuhn, J. K. Trace elements in coal: occurrence and distribution. Ill. State Geol. Surv. Urbana Ill Circ., 1977, no. 499, 154.

17. Wagner, N. J., Hlatshwayo, B. The occurrence of potentially hazardous trace elements in five Highveld coals, South Africa. Int. J. Coal Geol., 2005, 63(3–4), 228–246.

18. Liu, G. J., Zheng, L. G., Zhang, Y., Qi, C. C., Chen, Y. W., Peng, Z. C. Dis­tribution and mode of occurrence of As, Hg and Se and Sulfur in coal Seam 3 of the Shanxi Formation, Yanzhou Coalfield, China. Int. J. Coal Geol., 2007, 71(2–3), 371–385.

19. Brumsack, H. J. The trace metal content of recent organic carbon-rich sedi­ments: Implications for Cretaceous black shale formation. Palaeogeogr. Palaeocl., 2006, 232(2–4), 344–361.

20. Liu, S. Q., Wang, Y. T., Yu, L., Oakey, J. Volatilization of mercury, arsenic and selenium during underground coal gasification. Fuel, 2006, 85(10–11), 1550–1558.

21. Vassilev, S. V., Vassileva, C. G. Geochemistry of coals, coal ashes and com­bustion wastes from coal-fired power stations. Fuel Process. Technol., 1997, 51(1–2), 19–45.

22. Vassilev, S. V., Eskenazy, G. M., Vassileva, C. G. Behaviour of elements and minerals during preparation and combustion of the Pernik coal, Bulgaria. Fuel Process. Technol., 2001, 72(2–3), 103–129.

Back to Issue