ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2020): 0.934

ORGANIC GEOCHEMICAL CHARACTERISTICS OF MIOCENE OIL SHALE DEPOSITS IN THE ESKİŞEHİR BASIN, WESTERN ANATOLIA, TURKEY; pp. 315–336

Full article in PDF format | doi: 10.3176/oil.2014.4.02

Authors
İLKER ŞENGÜLER, REYHAN KARA-GÜLBAY, SADETTİN KORKMAZ

Abstract

In the Eskişehir Basin, western Turkey, oil shale occurs in alterna­tion with claystone, siltstone, conglomerate and coal (lignite) seams in lacustrine deposits of Early-Middle Miocene age. The thickness of oil shale seams drilled during the study varies between 20 and 30 m. Organic geo­chemical features of the shale were evaluated using TOC, pyrolysis, GC and GC-MS analyses.
   The Eskişehir oil shale is characterized by very high TOC contents (6.32–37.15 wt%), Hydrogen Index (HI = 392–777 mg HC/g TOC), Potential Yield (PY = 35.50–159.32 mg HC/g rock) and very low Oxygen Index (OI = 13–92 mg CO2/g TOC) values. Organic matter in the studied oil shale is of Type II kerogen and shows S2/S3 ratio values between 5.49 and 56.79 and low Tmax (421–435 °C ) and PI (0.01–0.05) values.
   Low Pr/Ph ratio of oil shale (0.17–0.96) is indicative of anoxic conditions. Dominant steranes are either C27 or C28. Normal steranes are more abundant than iso- and diasteranes and diasterane abundances as well as 20S/(20S + 20R) and bb/(bb + aa) sterane ratios are low.   While oil shale samples in general have low tricyclic terpane (C19–C29) abundance, their C30 (R + S) tricyclic terpane content is high. For all the oil shale samples studied C29/C30 hopane, C31R homohopane/hopane and moretane/hopane ratios are high and Ts/(Ts + Tm) and C29Ts/(C29Ts + C29H) ratios are low. 22S homohopanes are recorded in lower quantities in comparison to 22R epimers and the 22S/(22S + 22R) homohopane ratio is low.


References

  1. Talu, S. Oil shale of Bahçecik (İzmit). Report No. 4667, MTA, Ankara, 1967 (in Turkish).

  2. Yanılmaz, E., İpeksever, M., Aslan, N. Report on Gölpazarı (Bilecik) oil shale field. Report No. 7060, MTA, Ankara, 1980 (in Turkish).

  3. Taka, M., Şener, M. Oil shale facility of Himmetoğlu (Göynük-Bolu) field and their wells. Report No. 8533, MTA, Ankara, 1988 (in Turkish).

  4. Şener, M., Şengüler, İ. Geology and economic usage of Beypazarı oil shale. Report No. 9202, MTA, Ankara, 1991 (in Turkish).

  5. Şener, M., Şengüler, İ. Geology, usage facility and firing test results in fluid bed of Seyitömer oil shale. Report. No. 9441, MTA, Ankara, 1992 (in Turkish).

  6. Şener, M., Şengüler, İ. Geology and technologic usage facility of Hatıldağ (Bolu-Göynük) oil shale. Report No. 9445, MTA, Ankara, 1992 (in Turkish).

  7. Şener, M., Şengüler, İ., Kök, M. V. Geological considerations for the economic evaluation of oil shale deposits in Turkey. Fuel, 1994, 74(7), 999–1003.
http://dx.doi.org/10.1016/0016-2361(95)00045-7

  8. Kara Gülbay, R. Rhenium and molybdenum in Tertiary oil shale deposits in Northwestern Anatolia, Turkey. Oil Shale, 2007, 24(3), 450–464.

  9. Kara-Gülbay, R., Korkmaz, S. Element contents and organic matter–element relationship of the Tertiary oil shale deposits in northwest Anatolia, Turkey. Energ. Fuel, 2008, 22, 3164–3173.
http://dx.doi.org/10.1021/ef8002137

10. Kara Gülbay, R., Korkmaz, S. Organic geochemistry, depositional environment and hydrocarbon potential of the Tertiary oil shale deposits in NW Anatolia, Turkey. Oil Shale, 2008, 25(4), 444–464.
http://dx.doi.org/10.3176/oil.2008.4.05

11. Kök, M. V. Geological considerations for the economic evaluation of Turkish oil shale deposits and their combustion – pyrolysis behavior. Energ. Source. Part A, 2009, 32(4), 323–335.
http://dx.doi.org/10.1080/15567030801909797

12. Siyako, F., Coşar, N., Cokyaman, S., Coşar, Z. Tertiary geology and coal possibilities of Bozüyük-İnönü-Eskişehir-Alpu-Beylikova-Sakarya areas. MTA Report No. 9281, Ankara, 1991 (in Turkish).

13. Gözler, Z., Cevher, F., Ergül, E., Asutay, J. H. Geology of the Central Sakarya and its southern area. MTA Report No. 9973, Ankara, 1996 (in Turkish).

14. Steffens, P. Sivrihisar Polatlı (Eskişehir, Ankara) region lignite report. MTA Technical Report No. 6386, Ankara, 1970 (in Turkish).

15. Ocakoğlu, F. A re-evaluation of the Eskişehir Fault Zone as a recent extensional structure in NW Turkey. J. Asian Earth Sc., 2007, 31(2), 91–103.
http://dx.doi.org/10.1016/j.jseaes.2007.05.002

16. Şenguler, İ. Geology and coal potential of Eskişehir-Sivrihisar Basin (Turkey). Technical Report No. 11473, MTA, Ankara, 2011 (in Turkish).

17. Şengüler, İ., Akkiraz, M. S., Yanık, G. Palynology, Palaeoecology and Clay Mineralogy of Miocene Deposits in the Eskişehir Basin. Bulletin of Turkish Association of Petroleum Geologist (in press), Ankara, 2013.

18. Connan, J. Molecular geochemistry in oil exploration. In: Applied Petroleum Geochemistry (Bordenave, M. L., ed.). Editions Technip, Paris, 1993, 175–204.

19. Peters, K. E., Moldowan, J. M. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Prentice-Hall, Englewood Cliffs, N. J., 1993.

20. Hunt, J. M. Petroleum Geochemistry and Geology. W. H. Freeman and Company, New York, 1995.

21. Sinninghe Damsté, J. S., Kenig, F., Koopmans, M. P., Köster, J., Schouten, S., Hayes, J. M., De Leeuw, J. W. Evidence for gammacerane as an indicator of water column stratification. Geochim. Cosmochimic. Ac., 1995, 59(9), 1895–1900.
http://dx.doi.org/10.1016/0016-7037(95)00073-9

22. Peters, K. E., Walters, C. C., Moldowan, J. M. The Biomarker Guide. Bio­markers and Isotopes in Petroleum Exploration and Earth History, vol. 2, 2nd ed. Cambridge University Press, Cambridge, 2005.

23. Tissot, B. P., Welte, D. H. Petroleum Formation and Occurrence. Springer-Verlag, Heidelberg, 1984.
http://dx.doi.org/10.1007/978-3-642-87813-8

24. Moldowan, J. M., Seifert, W. K., Gallegos, E. J. Relationship between petroleum composition and depositional environment of petroleum source rocks. Am. Assoc. Petr. Geol. B., 1985, 69, 1255–1268.

25. Whitehead, E. V. The structure of petroleum pentacyclanes. In: Advances in Organic Geochemistry (Tissot, B., Biener, F., eds.), Editions Technip, Paris, 1974, 225–243.

26. Ekweozor, C. M., Okogun, J. I., Ekong, D. E. U., Maxwell, J. R. Preliminary organic geochemical studies of samples from the Niger delta (Nigeria): II. Analyses of shale for triterpenoid derivatives. Chem. Geol., 1979, 27(1–2), 29–37.
http://dx.doi.org/10.1016/0009-2541(79)90101-3

27. Grantham, P. J., Posthuma, J., Baak, A. Triterpanes in a number of far-eastern crude oils. In: Advances in Organic Geochemistry (Bjoroy, M. et al., eds.). J. Wiley and Sons, New York, 1983, 675–683.

28. ten Haven, H. L., Rullkötter, J. The diagenetic fate of taraxer-14-ene and oleanene isomers. Geochim. Cosmochim. Ac., 1988, 52(10), 2543–2548.
http://dx.doi.org/10.1016/0016-7037(88)90312-2

29. Riva, A., Caccialanza, P. G., Quagliaroli, F. Recognition of 18b(H) oleanane in several crudes and Tertiary-Upper Cretaceous sediments. Definition of a New Maturity Parameter. In: Advances in Organic Geochemistry 1987 (Matte­velli, L., Novelli, L., eds.). Pergamon Press, Oxford, 1988, 671–675.

30. Udo, O. T., Ekweozor, C. M. Significance of oleanane occurrence in shales of Opuama Channel Complex, Niger Delta. Energ. Fuel., 1990, 4, 248–254.
http://dx.doi.org/10.1021/ef00021a006

31. Ourisson, G., Albrecht, P., Rohmer, M. Predictive microbial biochemistry – from molecular fossils to prokaryotic membranes. Trends Biochem. Sci., 1982, 7(7), 236–239.
http://dx.doi.org/10.1016/0968-0004(82)90028-7

32. Volkman, J. K., Banks, M. R., Denwer, K., Aquino Neto, F. R. Biomarker com­position and depositional setting of Tasmanite oil shale from northern Tasmania, Australia. In: 14th International Meeting on Organic Geochemistry, September 22, 1989, Abstract No 168, Paris.

33. Azevedo, D. A., Aquino Neto, F. R., Simoneit, B. R. T., Pinto, A. C. Novel series of tricyclic aromatic terpanes characterized in Tasmanian tasmanite. Org. Geochem., 1992, 18(1), 9–16.
http://dx.doi.org/10.1016/0146-6380(92)90138-N

34. Simoneit, B. R. T., Schoell, M., Dias, R. F., de Aquino Neto, F. R. Unusual carbon isotope compositions of biomarker hydrocarbons in a Permian tasmanite. Geochim. Cosmochim. Ac., 1993, 57(17), 4205–4211.
http://dx.doi.org/10.1016/0016-7037(93)90316-O

35. Riva, A., Riolo, J., Mycke, B., Ocampo, R., Callot, H. J., Albrecht, P., Nalı, M. Molecular parameters in Italian carbonate oils: Reconstruction of past depositional environments. Abstract. In: 14th International Meeting on Organic Geochemistry, Paris, September 18–22, 1989, pp. 335.

36. Waples, D. W., Machihara, T. Biomarkers for Geologists: A Pratical Guide to the Application of Steranes and Triterpanes in Petroleum Geology. AAPG Methods in Exploration Series, No. 9, 1991.

37. Seifert, W. K., Moldowan, J. M. Use of biological markers in petroleum exploration. In: Methods in Geochemistry and Geophysics (Johns, R. B., ed.), 1986, 24, 261–190.

38. Seifert, W. K., Moldowan, J. M. The effect of thermal stress on source-rock quality as measured by hopane stereochemistry. In: Advances in Organic Ggeochemistry (Douglas, A. G., Maxwell, J. R., eds.). Pergamon Press, Oxford, 1980, 229–237.

39. Grantham, P. J. Sterane isomerisation and moretane/hopane ratios in crude oils derived from Tertiary source rocks. Org. Geochem., 1986, 9(6), 293–304.
http://dx.doi.org/10.1016/0146-6380(86)90110-5

40. Kvenvolden, K. A., Simoneit, B. R. T. Hydrothermally derived petroleum examples from Guaymas Basin, Gulf of California, and Escanaba Trough, northeast Pacific Ocean. Am. Assoc. Petr. Geol. B., 1990, 74, 223–237.

41. Hughes, W. B., Holba, A. G., Mueller, D. E., Richardson, J. S. Geochemistry of greater Ekofisk crude oils. In: Petroleum Geochemistry in Exploration of the Norvegian Shelf (Thomas, B. M., Doré, A. G., Eggen, S. S., Home, P. C., Larsen, R. M., eds.). Graham and Trotman, London, 1985, 75–92.
http://dx.doi.org/10.1007/978-94-009-4199-1_5

42. Sofer, Z., Zumberge, J. E., Lay, V. Stable carbon isotopes and biomarkers as tools in understanding genetic relationship, maturation, biodegradation, and migration of crude oils in Northern Peruvian Oriente (Maranon) Basin. Org. Geochem., 1986, 10(1–3), 377–389.
http://dx.doi.org/10.1016/0146-6380(86)90037-9

43. Cornford, C., Christie, O., Endresen, U., Jensen, P., Myhr, M.-B. Source rock and seep oil maturity in Dorset, southern England. Org. Geochem., 1988, 13(1–3), 399–409.
http://dx.doi.org/10.1016/0146-6380(88)90062-9

44. Kolaczkowska, E., Slougui, N. E., Watt, D. S., Marcura, R. E., Moldowan, J. M. Thermodynamic stability of various alkylated, dealkylated, and rearranged 17α- and 17β-hopane isomers using molecular mechanics calculations. Org. Geochem., 1990, 16(4–6), 1033–1038.
http://dx.doi.org/10.1016/0146-6380(90)90140-U

45. Fowler, M. G., Brooks, P. W. Organic geochemistry as an aid in the inter­pre­ta­tion of the history of oil migration into different reservoirs at the Hibernia K-18 and Ben Nevis I-45 wells, Jeanne d’Arc Basin, offshore eastern Canada. Org. Geochem., 1990, 16(1–3), 461–475.
http://dx.doi.org/10.1016/0146-6380(90)90062-5

46. Mukhopadhyay, P. K., Wade, J. A., Kruge, M. A. Organic facies and maturation of Jurassic/Cretaceous rocks, and possible oil-source rock correlation based on pyrolysis of asphaltenes, Scotian Basin, Canada. Org. Geochem., 1995, 22(1), 85–104.
http://dx.doi.org/10.1016/0146-6380(95)90010-1

47. Espitalie, J., Madec, M., Tissot, B., Mennig, J. J., Leplat, P. Source rock charac­terization methods of petroleum exploration. In: Proc. Offshore Technology Conference, 3(9), 1977, 439–444.
http://dx.doi.org/10.4043/2935-MS

48. Dembicki Jr., H. Three common source rock evaluation errors made by geo­logists during prospect or play appraisals. Am. Assoc. Petr. Geol. B., 2009, 93(3), 341–356.


Back to Issue