eesti teaduste
akadeemia kirjastus
SINCE 1984
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2020): 0.934


Full article in PDF format | doi: 10.3176/oil.2014.4.03



Whether there is a risk of shale oil leakage along the depleted wells or multi-level geological fractures during in situ oil shale mining was predicted using the geological data from the Songliao Basin and survey wells in Fuyu county of Jilin province, China. The simulation results obtained employing the Transport of Unsaturated Groundwater and Heat 2 (TOUGH2) software indicate that oil leakage along depleted wells would entail greater risks to the upper aquifer, while the leakage along multi-level geological fractures would involve higher risks to the lower aquifer close to the shale beds. The distributions of shale oil saturation under the original and 1.3-fold formation pressures are slightly different, and the pollution halo somewhat increased only in an aquifer 40–50 m underground. The shale oil saturation in the leaking channel may be 0 during the leaking process.


  1. Han, X. X, Jiang, X. M., Wang, H., Cui, Z. G. Study on design of Huadian oil shale-fired circulating fluidized bed boiler. Fuel Process. Technol., 2006, 87(4), 289–295.

  2. Sonibare, O. O., Jacob, D. E., Ward, C. R., Foley, S. F. Mineral and trace element composition of the Lokpanta oil shales in the Lower Benue Trough, Nigeria. Fuel, 2011, 90(9), 2843–2849.

  3. Miao, Z. Y., Wu, G. G., Li, P., Meng, X. L., Zheng, Z. L. Investigation into co-pyrolysis characteristics of oil shale and coal. Int. J. Mining Sci.Technol., 2012, 22(2), 245–249.

  4. Sun, P. C., Sachsenhofer, R. F., Liu, Z. J., Strobl, S. A. I., Meng, Q. T., Liu, R., Zhen, Z. Organic matter accumulation in the oil shale- and coal-bearing Huadian Basin (Eocene; NE China). Int. J. Coal Geol., 2013, 105, 1–15.

  5. Na, J. G., Im, C. H., Chung, S. H., Lee, K. B. Effect of oil shale retorting temperature on shale oil yield and properties. Fuel, 2012, 95, 131–135.

  6. Muhammad, A. F., El Salmawy, M. S., Abdelaal, A. M. Potential for upgrading El-Nakheil oil shale by froth flotation. Oil Shale, 2013, 30(1), 48–59.

  7. Hakala, J. A., Stanchina, W., Soong, Y., Hedges, S. Influence of frequency, grade, moisture and temperature on Green River oil shale dielectric properties and electromagnetic heating processes. Fuel Process. Technol., 2011, 92(1), 1–12.

  8. Syed, S., Qudaih, R., Talab, I., Janajreh, I. Kinetics of pyrolysis and combustion of oil shale sample from thermogravimetric data. Fuel, 2011, 90(4), 1631–1637.

  9. Tiwari, P., Deo, M. Compositional and kinetic analysis of oil shale pyrolysis using TGA–MS. Fuel, 2012, 94, 333–341.

10. Qun, Z., Dameng, L., Hongyan, W., Dexun, L., Shen, Y., Mingxiang, H., Lei, D. Identification of the depth range of in situ shale oil production. Oil Shale, 2013, 30(1), 19–26.

11. Wang, S., Jiang, X. M., Han, X. X., Tong, J. H. Investigation of Chinese oil shale resources comprehensive utilization performance. Energy, 2012, 42(1), 224–232.

12. Fu, X. G, Wang, J., Zeng, Y. H., Tan, F. W., Feng, X. L. REE geochemistry of marine oil shale from the Changshe Mountain area, northern Tibet, China. Int. J. Coal Geol., 2010, 81(3), 191–199.

13. Fu, X. G., Wang, J., Zeng, Y. H., Tan, F. W., He, J. L. Concentrations and modes of occurrence of platinum group elements in the Shengli River oil shale, northern Tibet, China. Fuel, 2010, 89(12), 3623–3629.

14. Kumar, R., Bansal, V., Badhe, R. M., Madhira, I. S. S., Sugumaran, V., Ahmed, S., Christopher, J., Patel, M. B., Basu, B. Characterization of Indian origin oil shale using advanced analytical techniques. Fuel, 2013, 113, 610–616.

15. Niu, M. T., Wang, S., Han, X. X., Jiang, X. M. Yield and characteristics of shale oil from the retorting of oil shale and fine oil-shale ash mixtures. Appl. Energ., 2013, 111, 234–239.

16. Wang, S., Liu, J. X., Jiang, X. M., Han, X. X., Tong, J. H. Effect of heating rate on products yield and characteristics of non-condensable gases and shale oil obtained by retorting Dachengzi oil shale. Oil Shale, 2013, 30(1), 27–47.

17. Youtsos, M. S. K., Mastorakos, E., Cant, R. S. Numerical simulation of thermal and reaction fronts for oil shale upgrading. Chem. Eng. Sci., 2013, 94, 200–213.

18. Sun, K. M, Tan, J., Wu, D. The research on dynamic rules of crack extension during hydraulic fracturing for oil shale in-situ exploitation. Procedia Environ­mental Sciences, 2012, 12, Part B, 736–743.

19. Vinegar, H. J., Bass, R. M., Hunsucker, B G.. Heat sources with conductive material for in situ thermal processing of an oil shale formation, US 20040211554 A1.

20. Vinegar, H. Shell’s in-situ conversion process. 26th Oil Shale Symposium, Golden, Colorado, USA, 16–18 October 2006, documents/R05a-HaroldVinegar.pdf.

21. Brandt, A. R. Converting oil shale to liquid fuels: energy inputs and greenhouse gas emissions of the shell in situ conversion process. Environ. Sci. Technol., 2008, 42(19), 7489–7495.

22. Xia, L., Fenjin, S., Mingli, S., Zhihong, W., Fuying, Z., Zehui, Z., Li, X., Feng, H. Geochemistry of deep coal-type gas and gas source rocks in Songliao Basin. Petrol. Explor. Develop., 2009, 36(3), 339–346.

23. Pruess, K. The TOUGH codes – a family of simulation tools for multiphase flow and transport processes in permeable media. Vadose Zone J., 2004, 3(3), 738–746.

24. Rutqvist, J., Birkholzer, J., Cappa, F., Tsang, C.-F. Estimating maximum sustain­able injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis. Energ. Convers. Manage., 2007, 48(6), 1798–1807.

25. Pruess, K., Oldenburg, C., Moridis, G. TOUGH2 User's Guide, Version 2.0. Lawrence Berkeley National Laboratory, Berkeley, California, 1999.

26. Xu, T., Kharaka, Y. K., Doughty, C., Freifeld, B. M., Daley, T. M. Reactive transport modeling to study changes in water chemistry induced by CO2 injection at the Frio-I Brine Pilot. Chem. Geol., 2010, 271(3–4), 153–164.

Back to Issue