eesti teaduste
akadeemia kirjastus
SINCE 1984
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2020): 0.934


Full article in PDF format | doi: 10.3176/oil.2014.4.06



The kinetic parameters of Huadian oil shale and its solid residues after preheating treatment at different temperatures were evaluated by thermo­gravimetric (TG) analysis. As per distinct properties of oil shale, TG curves were divided into five separate stages during pyrolysis. The kinetic parameters were calculated based on TG results related to three stages ranging from 250 to 550 °C, using the Arrhenius theory and Coats-Redfern and Flynn-Wall-Ozawa methods. The results showed that the burning of oil shale and its solid residues was a complicated multi-step kinetic process. The activation energies of residues were reduced after preheating treatment below 300 °C. Moreover, the activation energies calculated from the Coats-Redfern method increased with increasing heating rate.


  1. Pan, Y., Zhang, X. M., Liu, S. H., Yang, S. C., Ren, N. A Review on technologies for oil shale surface retort. J. Chem. Soc. Pak., 2012, 34(6), 1331–1338.

  2. Liu, D. X., Wang, H. Y., Zheng, D. W., Fang, C. H., Ge, Z. X. World progress of oil shale in-situ exploitation methods. Natural Gas Industry, 2009, 29, 128–132 (in Chinese).

  3. Jiang, X. M., Han, X. X., Cui, Z. G. Progress and recent utilization trends in combustion of Chinese oil shale. Prog. Energ. Combust., 2007, 33(6), 552–579.

  4. Niu, M. T., Wang, S., Han, X. X., Jiang, X. M. Yield and characteristics of shale oil from the retorting of oil shale and fine oil-shale ash mixtures. Appl. Energ., 2013, 111, 234–239.

  5. Guo, H. F., Peng, S. Y., Lin, J. D., Chang, J., Lei, S., Fan, T. B., Liu, Y. Y. Retorting oil shale by a self-heating route. Energ. Fuel, 2013, 27, 2445–2451.

  6. Sun, Y. H., Bai, F. T., Liu, B. C., Liu, Y. M., Guo, M. Y., Guo, W., Wang, Q. W., Lü, X. S., Yang, F., Yang, Y. Characterization of the oil shale products derived via topochemical reaction method. Fuel, 2014, 115, 338–346.

  7. Martins, M. F., Salvador, S., Thovert, J.-F., Debenest, G. Co-current combus­tion of oil shale – Part 1: Characterization of the solid and gaseous products. Fuel, 2010, 89(1), 144–151.

  8. Bhargava, S., Awaja, F., Subasinghe, N. D. Characterisation of some Australian oil shale using thermal, X-ray and IR techniques. Fuel, 2005, 84(6), 707–715.

  9. Jaber, J. O., Probert, S. D. Non-isothermal thermogravimetry and decomposi­tion kinetics of two Jordanian oil shales under different processing conditions. Fuel Process. Technol., 2000, 63(1), 57–70.

10. Rajeshwar, K., Nottenburg, R., Dubow, J. Thermophysical properties of oil shales. J. Mater. Sci., 1979, 14(9), 2025–2052.

11. Kök, M. V. Heating rate effect on the DSC kinetics of oil shales. J. Therm. Anal. Calorim., 2007, 90(3), 817–821.

12. Kök, M. V. Effect of clay on crude oil combustion by thermal analysis techniques. J. Therm. Anal. Calorim., 2006, 84(2), 361–366.

13. Kök, M. V., Pokol, G., Keskin, C., Madarász, J., Bagci, S. Light crude oil combustion in the presence of limestone matrix. J. Therm. Anal. Calorim., 2004, 75(3), 781–786.

14. Kök, M. V., Pamir, R. Pyrolysis kinetics of oil shales determined by DSC and TG/DTG. Oil Shale, 2003, 20(1), 57–68.

15. Kök, M. V., Pokol, G., Keskin, C., Madarász, J., Bagci, S. Combustion cha­racteristics of lignite and oil shale samples by thermal analysis techniques. J. Therm. Anal. Calorim., 2004, 76(1), 247–254.

16. Kok, M. V., Senguler, I., Hufnagel, H., Sonel, N. Thermal and geochemical investigation of Seyitomer oil shale. Thermochim. Acta, 2001, 371(1–2), 111–119.

17. Kök, M. V., Iscan, A. G. Oil shale kinetics by differential methods. J. Therm. Anal. Calorim., 2007, 88(3), 657–661.

18. Jiang, X. M., Han, X. X., Cui, Z. G. Mechanism and mathematical model of Huadian oil shale pyrolysis. J. Therm. Anal. Calorim., 2006, 86(2), 457–462.

19. Yan, J. W., Jiang, X. M., Han, X. X. Study on the characteristics of the oil shale and shale char mixture pyrolysis. Energ. Fuel, 2009, 23, 5792–5797.

20. Khan, M. R. Influence of weathering and low-temperature preoxidation on oil shale and coal devolatilization. Energ. Fuel, 1987, 1(4), 366–376.

21. Coats, A. W., Redfern, J. P. Kinetic parameters from thermogravimetric data. Nature, 1964, 201, 68–69.

22. Flynn, J. H., Wall, L. A. A quick, direct method for the determination of activation energy from thermogravimetric data. J. Polym. Sci. Part B. Pol. Lett., 1966, 4(5), 323–328.

23. Ozawa, T. A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn., 1965, 38, 1881–1886.

24. Doyle, C. Kinetic analysis of thermogravimetric data. J. Appl. Polym. Sci., 1961, 5(15), 285–292.

25. Opfermann, J., Kaisersberger, E. An advantageous variant of the Ozawa-Flynn-Wall analysis. Thermochim. Acta, 1992, 203, 167–175.

26. López-Fonseca, R., Landa., I., Gutiérrez-Ortiz, M. A., González-Velasco, J. R. Non-isothermal analysis of the kinetics of the combustion of carbonaceous materials. J. Therm. Anal. Calorim., 2005, 80(1), 65–69.

27. Tonbul, Y. Pyrolysis of pistachio shell as a biomass. J. Therm. Anal. Calorim., 2008, 91(2), 641–647.

28. Zhang, N.X. The research methods for clay minerals. First ed.: Science Press, Beijing, 1990.

29. Altun, N. E., Hwang, J.-Y., Hicyilmaz, C. Enhancement of flotation per­formance of oil shale cleaning by ultrasonic treatment. Int. J. Miner. Process., 2009, 91(1–2), 1–13.

30. Ruan, J. S., Bai, W. Analysis and application of infra-red spectra for kerogen. Exp. Petro. Geol., 1988, 10, 80–86 (in Chinese).

31. Adams, M. J., Awaja, F., Bhargava, S., Grocott, S., Romeo, M. Prediction of oil yield from oil shale minerals using diffuse reflectance infrared Fourier transform spectroscopy. Fuel, 2005, 84(14–15), 1986–1991.

32. Ganz, H. H., Kalkreuth, W. IR classification of kerogen type, thermal matura­tion, hydrocarbon potential and lithological characteristics. J. Southe. Asian Earth, 1991, 5(1–4), 19–28.

33. Grice, K., Schouten, S., Blokker, P., Derenne, S., Largeau, C., Nissenbaum, A. Sinninghe Damste, J. S. Structural and isotopic analysis of kerogens in sedi­ments rich in free sulfurised Botryococcus braunii biomarkers. Org. Geochem., 2003, 34(3), 471–482.

34. Cumming, J. W., McLaughlin, J. The thermogravimetric behaviour of coal. Thermochim. Acta, 1982, 57(3), 253–272.

35. Idris, S. S., Abd Rahman, N., Ismail, K., Alias, A. B., Abd Rashid, Z., Aris, M. J. Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA). Bioresource Technol., 2010, 101(12), 4584–4592.

36. Williams, P. T., Ahmad, N. Investigation of oil-shale pyrolysis processing con­ditions using thermogravimetric analysis. Appl. Energ., 2000, 66(2), 113–133.

37. Lapuerta, M., Hernάndez, J. J., Rodrı́guez, J. Kinetics of devolatilisation of forestry wastes from thermogravimetric analysis. Biomass Bioenerg., 2004, 27(4), 385–391.

38. Rajeshwar, K. Thermal analysis of coals, oil shales and oil sands. Thermo­chim. Acta, 1983, 63(1), 97–112.

39. Wahyudiono, Shiraishi, T., Sasaki, M., Goto, M. Non-catalytic liquefaction of bitumen with hydrothermal/solvothermal process. J. Supercrit. Fluid., 2011, 60, 127–136.

40. Pan, C. C., Geng, A. S., Zhong, N. N., Liu, J. Z., Yu, L. P. Kerogen pyrolysis in the presence and absence of water and minerals 1. Gas components. Energ. Fuel., 2008, 22, 416-427.

41. Stanmore, B. R., Brilhac, J. F., Gilot, P. The oxidation of soot: a review of experiments, mechanisms and models. Carbon, 2001, 39(15), 2247–2268.

42. Su, D. S., Müller, J.-O., Jentoft, R. E., Rothe, D., Jacob, E., Schlögl, R. Fullerene-like soot from EuroIV diesel engine: consequences for catalytic automotive pollution control. Top. Catal., 2004, 30/31(1–4), 241–245.

43. Lázaro, M. J., Moliner, R., Suelves, I. Non-isothermal versus isothermal technique to evaluate kinetic parameters of coal pyrolysis. J. Anal. Appl. Pyrol., 1998, 47(2), 111–125.

44. Qian, J. L., Yin, L. Oil Shale – Supplementary Energy of Petroleum. China Petrochemical Press, Beijing, 2011 (in Chinese).

45. Hubbard, A. B., Robinson, W. E., Savage, J. W. A thermal decomposition study of Colorado oil shale. Bureau of Mines, Washington, DC, 1950.

46. Goldfarb, J. L., D’Amico, A., Culin, C., Suuberg, E. M., Külaots, I. Oxidation kinetics of oil shale semicokes: reactivity as a function of pyrolysis temperature and shale origin. Energ. Fuel., 2013, 27(2), 666–672.

47. Külaots, I., Goldfarb, J. L., Suuberg, E. M. Characterization of Chinese, American and Estonian oil shale semicokes and their sorptive potential. Fuel, 2010, 89(11), 3300–3306.

48. Borah, D., Barua, M., Baruah, M. K. Dependence of pyrite concentration on kinetics and thermodynamics of coal pyrolysis in non-isothermal systems. Fuel Process. Technol., 2005, 86(9), 977–993.

Back to Issue