eesti teaduste
akadeemia kirjastus
SINCE 1984
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2020): 0.934


Full article in PDF format | doi: 10.3176/oil.2014.1.03



The Jimusaer oil shale, located in the northern foot of Bogda Mountain, was deposited in the Lucaogou Formation in the Upper Permian. In this paper the effect of paleostructure, paleoclimate and sedimentary environment on the mineralization of oil shale in the study area was inves­tigated. The results show that the Jimusaer oil shale was developed in the stable paralic lacustrine basin formed in the Late Middle Permian, and cropped out with the uplift of Bogda Mountain during the Himalayan orogeny. The Lucaogou Formation, which is composed of six lithologic segments, was deposited in a warm humid to dry hot climate and fresh to brackish water environment indicated by values of Sr/Cu, Sr/Ba and Mn/Fe ratios, which vary segment by segment. There are also similar variety regularities shown, which implicate that the changes of paleoclimate influenced directly water salinity in the study area. The Lucaogou Formation includes two oil shale segments which were developed respectively in the shallow to semi-deep lake and semi-deep to deep lake, and the environment of large-area, moderate saline deep water provided favourable conditions for generation and preservation of oil shale.


  1. Liu, Z. J., Liu, R. Oil shale resource state and evaluating system. Earth Science Frontiers, 2005, 12(3), 315–323 (in Chinese).

  2. Tao, S., Tang, D. Z., Li, J. J., Xu, H., Li, S., Chen, X. Z. Indexes in evaluating the grade of Bogda Mountain oil shale in China. Oil Shale, 2010, 27(2), 179–189.

  3. Tao, S., Tang, D. Z., Xu, H., Cai, J. L., Gou, M. F., Chen, Z. L. Retorting properties of oil shale found at the northern foot of Bogda Mountain, China. Oil Shale, 2011, 28(1), 19–28.

  4. Jiao, Y. Q., Wu, L. Q., He, M. C., Roger, M., Wang, M. F., Xu, Z. C. Occurrence, thermal evolution and primary migration processes derived from studies of organic matter in the Lucaogou source rock at the southern margin of the Junggar Basin, NW China. Science in China Series D: Earth Sciences, 2007, 50, 114–123.

  5. Tao, S., Wang, Y. B., Tang, D. Z., Xu, H., Zhang, B., He, W., Liu, C. Com­position of the organic constituents of Dahuangshan oil shale at the northern foot of Bogda Mountain, China. Oil Shale, 2012, 29(2), 115–127.

  6. Tao, S., Wang, Y. B., Tang, D. Z., Wu, D. M., Xu, H., He, W. Organic petrology of Fukang Permian Lucaogou Formation oil shales at the northern foot of Bogda Mountain, Junggar Basin, China. Int. J. Coal Geol., 2012, 99(1), 27–34.

  7. Tao, S., Wang, Y. B., Tang, D. Z., Xu, H., Zhang, B., Deng, C. M., He, W. Estima­tion of the mineable oil shale amount in West Fukang at the Northern Foot of Bogda Mountain, Zhunggar Basin, China. Energ. Source., Part A, 2012, 34(19), 1791–1800.

  8. Wu, S. Z., Qu, X., Li, Q. Paleoclimatic conditions of Lucaogou and Huangshanjie formations in Junggar. Xinjiang Geol., 2009, 20(3), 183–186 (in Chinese).

  9. Li, C. B., Guo, W., Song, Y. Q., Du, J. F. The genetic type of the oil shale at the northern foot of Bogda Mountain, Xinjiang and prediction for favorable areas. Journal of Jilin University (Earth Science Edition), 2006, 36(6), 949–953 (in Chinese).

10. Carroll, A. R. Upper Permian lacustrine organic facies evolution, Southern Junggar Basin, NW China. Org. Geochem., 1998, 28(11), 649–667.

11. Gao, Z. L., Kang, Y. S., Liu, R. H., Bai, W. H. Geological features and develop­mental controlling factors of Lucaogou oil shale in the southern margin of Junggar basin. Xinjiang Geol., 2011, 29(2), 189–193 (in Chinese).

12. Couch, E. L. Calculation of palaeosalinities from boron and clay mineral data. Am. Assoc. Petr. Geol. B., 1971, 55, 1829–1839.

13. Department of Geology, Nanjing University. Geochemistry. Science Press, Beijing, 1987 (in Chinese).

14. Chen, H. J., Liu, Z. J., Liu, R., Guo, W., Xiao, G. P., Wu, Y. B., Fu, Z. R., Shi, J. Z., Hu, X. F., Meng, Q. T. Characteristics of oil shale and paleo­environment of the Bayingebi formation in the lower Cretaceous in Yin’e basin. Journal of Jilin University (Earth Science Edition), 2009, 39(4), 669–675 (in Chinese).

15. Abraham, L. (ed.). Lakes – Chemistry, Geology, Physics. Geological Publishing House. Springer-Verlag, Berlin, 1978.

16. Liu, Z. J., Meng, Q. T., Liu, R. Characteristics and genetic types of continental oil shales in China. Journal of Palaeogeography, 2009, 11(1), 105–114 (in Chinese).

17. Miknis, F. P., McKay, J. F. (eds.). Geochemistry and Chemistry of Oil Shales. ACS symposium series 230, Washington, D. C., 1983.

18. Song, M. S. Sedimentary environment geochemistry in the Shasi section of southern ramp, Dongying depression. Journal of Mineralogy and Petrology, 2005, 25(1), 67–73 (in Chinese).

19. Finkelman, R. B. Trace elements in coal: environmental and health significance. Biol. Trace Elem. Res., 1999, 67(3), 197–204.

20. Hatch, J. R., Leventhal, J. S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. Chem. Geol., 1992, 99(1–3), 65–82.

21. Lewan, M. D. Factors controlling the proportionality of vanadium to nickel in crude oils. Geochim. Cosmochim. Ac., 1984, 48(11), 2231–2238.

22. Lewan, M. D., Maynard, J. B. Factors controlling enrichment of vanadium and nickel in the bitumen of organic sedimentary rocks. Geochim. Cosmochim. Ac., 1982, 46(12), 2547–2560.

Back to Issue