ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2020): 0.934

FAST PYROLYSIS AND CO-PYROLYSIS OF GÖYNÜK OIL SHALE (TURKEY) AND POLYPROPYLENE IN FREE FALLING REACTOR (FFR); pp. 30–41

Full article in PDF format | doi: 10.3176/oil.2014.1.04

Authors
CEM ERDOĞAN, LEVENT BALLİCE, MEHMET SAĞLAM, MİTHAT YÜKSEL

Abstract

Fast pyrolysis of Göynük oil shale (GOS), polypropylene (PP) and the blend of GOS:PP on a 1:3 total carbon ratio basis was studied. The maximum product evolution temperature and the existence of synergistic effect were determined and the characteristics of pyrolysis products by carbon number were investigated.
    Pyrolysis products were analyzed by capillary gas chromatography. The volatile fraction of pyrolysis products was classified according to carbon number.
    Conversion to the volatile fraction of recovered hydrocarbons in fast co-pyrolysis of GOS:PP increased with increasing temperature. The effect of PP on the conversion of GOS was determined by calculating the difference between experimental and hypothetical mean values of conversion of total organic carbon into volatile products and a slight synergistic effect was observed at 600 oC (4.78%) and 650 oC (5.07%).


References

  1. Ballice, L., Yüksel, M., Sağlam, M., Reimert, R., Schulz, H. Classification of volatile products evolved during temperature-programmed co-pyrolysis of Turkish oil shales with low-density polyethylene. Fuel, 1998, 77(13), 1431–1441.
http://dx.doi.org/10.1016/S0016-2361(98)00066-0

  2. Kök, M. V. Oil shale resources in Turkey. Oil Shale, 2006, 23(3), 209–210.

  3. SPO, State Planning Organization. 8th 5 Years Development Plan. Mining Commission Report, DPT (SPO), Ankara, Turkey, 2000, 130 (in Turkish).

  4. MTA, General Directorate of Mineral Research and Exploration. Lignite, Asphaltite, Hard Coal, Oil Shale and Uranium Reserves in the World and in Turkey. MTA Report, 1993. MTA, Ankara, Turkey (in Turkish).

  5. Ballice, L., Yüksel, M., Sağlam, M., Schulz, H., Hanoğlu, C. Application of infrared spectroscopy to the classification of kerogen types and the thermo­gravi­metrically derived pyrolysis kinetics of oil shales. Fuel, 1995, 74(11), 1618–1623.
http://dx.doi.org/10.1016/0016-2361(95)00093-K

  6. Desbene, P. L., Essayeg, M., Desmazieres, B., Villeneuve, F. Analysis of bio­mass pyrolysis oils by a combination of various liquid chromatographic techniques and gas chromatography-mass spectroscopy. J. Chromatogr. A, 1991, 553, 211–221.
http://dx.doi.org/10.1016/S0021-9673(01)88491-0

  7. Probstein, R. F., Hicks, R. E. Synthetic Fuels. Mc Graw Hill Chemical Engineering Series, New York, 1982, 322–373.

  8. Kök, M. V., Pamir, R. Pyrolysis kinetics of oil shales determined by DSC and TG/DTG. Oil Shale, 2003, 20(1), 57–68.

  9. Bridgwater, A. V. Catalysis in thermal biomass conversion. Appl. Catal. A-Gen., 1994, 116(1–2), 5–47.
http://dx.doi.org/10.1016/0926-860X(94)80278-5

10. Evans, R. J., Felbeck Jr., G. T. High temperature simulation of petroleum formation – II. Effect of inorganic sedimentary constituents on hydrocarbon formation. Org. Geochem., 1983, 4(3–4), 145–152.
http://dx.doi.org/10.1016/0146-6380(83)90035-9

11. Ishiwatari, M., Sakashita, H., Tatsumi, T., Tominaga, H. Thermal decomposi­tion behavior of oil shale kerogens observed by stepwise pyrolysis gas chromato­graphy. J. Anal. Appl. Pyrol., 1993, 24(3), 273–290.
http://dx.doi.org/10.1016/0165-2370(93)85006-K

12. Gaboriaud, F., Vantelon, J.-P., Guelzim, A., Julien, L. Gas evolution during isothermal pyrolysis of Timahdit oil shale. J. Anal. Appl. Pyrol., 1991, 21(1–2), 119–131.
http://dx.doi.org/10.1016/0165-2370(91)80020-9

13. Kök, M. V., İşcan, A. G. Oil shale kinetics by differential methods. J. Therm. Anal. Calorim., 2007, 88(3), 657–661.
http://dx.doi.org/10.1007/s10973-006-8027-y

14. Demirbaş, A., Öztürk, T., Demirbaş, M. F. Recovery of energy and chemicals from carbonaceous materials. Energ. SourcePart A, 2006, 28, 1473–1482.
http://dx.doi.org/10.1080/009083190932169

15. Pinto, F., Costa, P., Gülyurtlu, İ., Cabrita, I., Pyrolysis of plastic wastes. 1. Effect of plastic waste composition on product yield. J. Anal. Appl. Pyrol., 1999, 51(1–2), 39–55.
http://dx.doi.org/10.1016/S0165-2370(99)00007-8

16. Aboulkas, A., El harfi, K., Nadifiyine, M., El bouadili, A. Investigation on pyro­lysis of Moroccan oil shale/plastic mixtures by thermogravimetric analysis. Fuel Process. Technol., 2008, 89(11), 1000–1006.
http://dx.doi.org/10.1016/j.fuproc.2008.03.011

17. Schulz, H., Böhringer, W., Kohl, C. P., Rahman, N. M., Will, A. Development and Application of Capillary GC Total Stream Sampling Technique for Gas/ Vapour Multicomponent Mixtures. German Society for Petroleum and Coal Chemistry e. V. Hamburg, 1984.

18. Gersten, J., Fainberg, V., Hetsroni, G., Shindler, Y. Kinetic study of the thermal decomposition of polypropylene, oil shale, and their mixture. Fuel, 2000, 79(13), 1679–1686.
http://dx.doi.org/10.1016/S0016-2361(00)00002-8

19. Ballice, L. Classification of volatile products evolved from the temperature-programmed co-pyrolysis of Turkish oil shales with atactic polypropylene (APP). Energ. Fuel., 2001, 15(3), 659–665.
http://dx.doi.org/10.1021/ef0002041

20. Ballice, L. Classification of volatile products evolved during temperature-programmed co-pyrolysis of low-density polyethylene (LDPE) with poly­propylene (PP). Fuel, 2002, 81(9), 1233–1240.
http://dx.doi.org/10.1016/S0016-2361(01)00130-2

21. Gersten, J., Fainberg, V., Garbar, A., Hetsroni, G., Shindler, Y. Utilization of waste polymers through one-stage low-temperature pyrolysis with oil shale. Fuel, 1999, 78(8), 987–990.
http://dx.doi.org/10.1016/S0016-2361(99)00002-2


Back to Issue