eesti teaduste
akadeemia kirjastus
SINCE 1984
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2020): 0.934


Full article in PDF format | doi: 10.3176/oil.2012.4.08



The growing demand for the world energy supply necessitates the employment of local low-grade fossil fuels like oil shale (OS). The use of such fuels is accompanied by the formation of large amounts of waste ash, which are usually disposed of in open-air deposits and may hence lead to serious environmental problems. The nature of environmental hazards depends on the composition and properties of the deposited ash, which in turn are derived from the composition of the initial fuel, as well as its processing parameters. The exploitation of Estonian OS deposits has a near century-long history, including over 60 years of industrial production of heat and power, and the respective management of ash deposits. In the current paper, the results of the last decade’s studies on the processes taking place in Estonian OS ash fields have been analysed. The complex composition of ash and its transformation reactions under ambient conditions have been considered. It is shown that the hydraulic ash removal and wet depositing system works as a natural CO2 trap. The algorithm for the calculation of the resulting effect has been evaluated.



  1. World Energy Outlook 2006. International Energy Agency, 2006. (

  2. Dellantonio, A., Fitz, W. J., Repmann, F., Wenzel, W. W. Disposal of coal com­bustion residues in terrestrial systems: contamination and risk management. J. Environ. Qual., 2010, 39(3), 761–775.

  3. Ots, A. Oil Shale Fuel Combustion. Tallinn, 2006.

  4. Trikkel, A., Keelmann, M., Kaljuvee, T., Kuusik, R. CO2 and SO2 uptake by oil shale ashes: effect of pre-treatment on kinetics. J. Therm. Anal. Calorim., 2010, 99(3), 763–769.

  5. Ots, A., Pihu, T., Arro, H. Influence of sulfur dioxide and hydrogen chloride on properties of oil shale ash. Oil Shale, 2005, 22(4S), 435–444.

  6. Kaljuvee, T., Kuusik, R. Emission of sulphur dioxide during thermal treatment of fossil fuels. J. Therm. Anal. Calorim., 1999, 56(3), 1243–1251.

  7. Kaljuvee, T., Kuusik, R., Trikkel, A. SO2 binding into the solid phase during thermooxidation of blends: Estonian oil shale semicoke. J. Therm. Anal. Calorim., 2003, 72(1), 393–404.

  8. Teedumäe, A., Raukas, A. The possibility of integrating sustainability into legal framework for use of oil shale reserves. Oil Shale, 2006, 23(2), 119–124.

  9. World Energy Outlook 2010. Executive Summary. International Energy Agency, 2010. (

10. Eesti statistika aastaraamat 2010. Statistical Yearbook of Estonia. Tallinn, 2010. (

11. Kattai, V., Saadre, T., Savitski, L. Estonian Oil Shale: Geology, Reserves, Mining Conditions. Geological Survey of Estonia, Tallinn, 2000 (in Estonian).

12. Bauert, H., Kattai, V. Kukersite oil shale. In: Geology and Mineral Resources of Estonia (A. Raukas, A. Teedumäe, eds.). Estonian Academy Publishers, Tal­linn, 1997, 313–327.

13. Eesti Energia Annual Report 2010. Environmental Report. (

14. Aarna, A. J., Lippmaa, E. T. On the structure of Baltic Basin oil shale. In: Transact. Tallinn Polytech. Inst. Tallinn, 1955, A-63, 3–50 (in Russian).

15. Dilaktorsky, N., Galibina, A., Kiiler, M. The phase composition of ash obtained by burning kukersite oil shale in pulverised mode, and the binding properties of glassy-phase oil shale ash. Research on Construction, 1961, 1, 113–127 (in Russian).

16. Vingisaar, P., Kattai, V., Utsal, K. The composition of the kukersite in the Baltic Oil Shale Basin. Proc. Estonian Acad. Sci. Geol., 1984, 33(2), 55–62 (in Russian, Summary in English).

17. Koel, M. Estonian oil shale. Oil Shale extra, 1999. ( oilshale/Est-OS.htm).

18. Paat, A. About the mineralogical composition of Estonian oil shale ash. Oil Shale, 2002, 19(3), 321–333.

19. Veiderma, M. Estonian oil shale – resources and usage. Oil Shale, 2003, 20(3S), 295–303.

20. Lille, Ü. Current knowledge on the origin and structure of Estonian kukersite kerogen. Oil Shale, 2003, 20(3), 253–263.

21. Golubev, N. Solid oil shale heat carrier technology for oil shale retorting. Oil Shale, 2003, 20(3S), 324–332.

22. Soone, J., Doilov, S. Sustainable utilization of oil shale resources and com­parison of contemporary technologies used for oil shale processing. Oil Shale, 2003, 20(3S), 311–323.

23. Arro, H., Prikk, A., Pihu, T. Combustion of Estonian oil shale in fluidized bed boilers, heating value of fuel, boiler efficiency and CO2 emissions. Oil Shale, 2005, 22(4S), 399–406.

24. Hotta, A., Parkkonen, R., Hiltunen, M., Arro, H., Loosaar, J., Parve, T., Pihu, T., Prikk, A., Tiikma, T. Experience of Estonian oil shale combustion based on CFB technology at Narva Power Plants. Oil Shale, 2005, 22(4S), 381–398.

25. Valdma, M., Tammoja, H., Keel, M. Optimization of Thermal Power Plants Operation. TUT Press, Tallinn, 2009.

26. Kuusik, R., Türn, L., Trikkel, A., Uibu, M. Carbon dioxide binding in the hetero­geneous systems formed at combustion of oil shale. 2. Interactions of system components – thermodynamic analysis. Oil Shale, 2002, 19(2), 143–160.

27. Uibu, M., Kuusik, R., Veskimäe, H. Seasonal binding of atmospheric CO2 by oil shale ash. Oil Shale, 2008, 25(2), 254–266.

28. Velts, O., Hautaniemi, M., Uibu, M., Kallas, J., Kuusik, R. Modelling of CO2 mass transfer and hydrodynamics in a semi-batch reactor. Journal of Inter­national Scientific Publications: Materials, Methods & Technologies, 2010, 4(2), 68–79.

29. Lille, Ü., Heinmaa, I., Müürisepp, A. M., Pehk, T. Investigation of kukersite structure using NMR and oxidative cleavage: On the nature of phenolic pre­cursors in the kerogen of Estonian kukersite. Oil Shale, 2002, 19(2), 101–116.

30. Fomina, A. S., Degtereva, Z. A., Nappa, L. A., Pobul, L. Y. Chemical com­posi­tion of Baltic oil shale kerogen. United Nations Symposium on the Develop­ment and Utilization of Oil Shale Resources. Tallinn: TPI Toimetised (Transact. Tallinn Polytech. Inst.), 1968.

31. Kahru, A., Põllumaa, L. Environmental hazard of the waste streams of Estonian oil shale industry: an ecotoxicological review. Oil Shale, 2006, 23(1), 53–93.

32. Arro, H., Prikk, A., Pihu, T. Calculation of composition of Estonian oil shale and its combustion products on the basis of heating value. Oil Shale, 1998, 15(4), 329–340.

33. Kattai, V. Oil Shale – Source of Oil. Geological Survey of Estonia, Tallinn, 2003 (in Estonian).

34. Development Plan of the Estonian Electricity Sector until 2018. Ministry
of Economic Affairs and Communications, p. 57. ( ELMAK_EN.pdf) 08.10.2010.

35. Liive, S. Oil shale energetics in Estonia. Oil Shale, 2007, 24(1), 1–4.

36. Liblik, V., Kaasik, M., Pensa, M., Rätsep, A., Rull, E., Tordik, A. Reduction of sulphur dioxide emissions and transboundary effects of oil shale based energy production. Oil Shale, 2006, 23(1), 29–38.

37. Kuusik, R., Uibu, M., Kirsimäe, K. Characterization of oil shale ashes formed at industrial-scale boilers. Oil Shale, 2005, 22(4S), 407–420.

38. Pihu, T., Arro, H., Prikk, A., Rootamm, R., Konist, A., Kirsimäe, K., Liira, M., Mõtlep, R. Oil shale CFBC ash cementation properties in ash fields. Fuel, 2012, 93, 172–180.

39. Bityukova, L., Mõtlep, R., Kirsimäe, K. Composition of oil shale ashes from pulverized firing and circulating fluidized-bed boiler in Narva Thermal Power Plants, Estonia. Oil Shale, 2010, 27(4), 339–353.

40. Mõtlep, R., Sild, T., Puura, E., Kirsimäe, K. Composition, diagenetic trans­forma­tion and alkalinity potential of oil shale ash sediments. J. Hazard. Mater., 2010, 184(1-3), 567–573.

41. Uibu, M., Velts, O., Kuusik, R. Developments in CO2 mineral carbonation of oil shale ash. J. Hazard. Mater., 2010, 174(1–3), 209–214.

42. Kuusik, R., Uibu, M., Toom, M., Muulmann, M.-L., Kaljuvee, T., Trikkel, A. Sulphation and carbonization of oil shale CFBC ashes in heterogeneous systems. Oil Shale, 2005, 22(4S), 421–434.

43. Trikkel, A., Zevenhoven, R., Kuusik, R. Modelling SO2 capture by Estonian limestones and dolomites. Proc. Estonian Acad. Sci. Chem., 2000, 49(1), 53–70.

44. Anthony, E. J., Granatstein, D. L. Sulfation phenomena in fluidized bed com­bustion systems. Prog. Energ. Combust. Sci., 2001, 27(2), 215–236.

45. Council Directive 1999/31/EC of 26 April 1999 on the landfill of waste. Official Journal of the European Communities. L182/1–19. ( LexUriServ/

46. Kuusik, R., Veskimäe, H., Kaljuvee, T., Parts, O. Carbon dioxide binding in the heterogeneous systems formed by combustion of oil shale. 1. Carbon dioxide binding at oil shale ash deposits. Oil Shale, 2001, 18(2), 109–122.

47. Uibu, M., Uus, M., Kuusik, R. CO2 mineral sequestration in oil-shale wastes from Estonian power production. J. Environ. Manage., 2009, 90(2), 1253–1260.

48. Kuusik, R., Paat, A., Veskimäe, H., Uibu, M. Transformations in oil shale ash at wet deposition. Oil Shale, 2004, 21(1), 27–42.

49. Liira, M., Kirsimäe, K., Kuusik, R., Mõtlep, R. Transformation of calcareous oil-shale circulating fluidized-bed combustion boiler ashes under wet condi­tions. Fuel, 2009, 88(4), 712–718.

50. Anthony, E. J., Jia, L., Wu, Y. CFBC ash hydration studies. Fuel, 2005, 84(11), 1393–1397.

51. Kaljuvee, T., Trikkel, A., Kuusik, R. Reactivity of oil shale ashes towards sulfur dioxide. 1. Activation of high-temperature ashes. Oil Shale, 1997, 14(3), 393–407.

52. Kuusik, R., Uus, M., Uibu, M., Stroganov, G., Parts, O., Trikkel, A., Pepo­yan, V., Terentiev, A., Kalnapenk, E. Method for neutralization of alkaline waste water with carbon dioxide consisting in flue gas. Patent EE05349, 2010.

53. Kuusik, R., Uibu, M., Uus, M., Velts, O., Trikkel, A., Veinjärv, R. Method for eliminating CO2 from flue gases by calcium compounds containing industrial wastes. Patent EE05446B1, 2011.

54. Uibu, M., Velts, O., Kuusik, R. Aqueous carbonation of oil shale wastes from Estonian power production for CO2 fixation and PCC production. In: Con­ference of Young Scientist on Energy Issues 2011, Kaunas, Lithuania, May 26–27, 2011, 415–424.

55. Kõiv, M., Liira, M., Mander, Ü., Mõtlep, R., Vohla, C., Kirsimäe, K. Phosphorus removal using Ca-rich hydrated oil shale ash as filter material – the effect of different phosphorus loadings and wastewater compositions. Water Res., 2010, 44(18), 5232–5239.

56. Myneni, S. C. B., Traina, S. J., Logan, T. J. Ettringite solubility and geo­chemistry of the Ca(OH)2–Al2(SO4)3–H2O system at 1 atm pressure and 298 K. Chem. Geol., 1998, 148(1–2), 1–19.

57. Nishikawa, T., Suzuki, K., Ito, S., Sato, K., Takebe, T. Decomposition of synthesized ettringite by carbonation. Cement Concrete Res., 1992, 22(1), 6–14.

58. Grounds, T., Midgley, H. G., Novell, D. V. Carbonation of ettringite by atmo­spheric carbon dioxide. Thermochim. Acta, 1988, 135, 347–352.

59. Method for determining the amount of carbon dioxide discharged into the atmosphere. Regulation of the Minister of the Environment No. 94, 16.07.2004. (

60. Kallaste, T., Liik, O., Ots, A. Possible Energy Sector Trends in Estonia. Context of Climate Change. SEI Tallinn Centre, Tallinn, 1999.

61. Arro, H., Prikk, A., Pihu, T. Calculation of CO2 emission from CFB boilers of oil shale power plants. Oil Shale, 2006, 23(4), 356–365.

62. Paist, A. Present and future of oil shale based energy production in Estonia. Oil Shale, 2011, 28(1S), 85–88.

63. Council Directive 96/61/EC of 24 September 1996 concerning integrated pollution prevention and control. Official Journal of the European Communities No L257/26–40. ( 1996:257:0026:0040:EN:PDF).

64. Hanni, R. Energy and valuable material by-product from firing Estonian oil shale. Waste Manage., 1996, 16(1–3), 97–99.

65. Turbas, E (ed.). Basics of Agricultural Chemistry.Valgus, Tallinn, 1971.

66. Kuldkepp, P. Basics of Plant Nutrition and Fertilization. AS Infotrükk, Tallinn, 1994.

67. Pets, L., Vaganov, P., Knoth, I., Haldna, Ü., Schwenke, H., Schnier, C., Juga, R. Microelements in oil-shale ash of the Baltic Thermoelectric Power Plant. Oil Shale, 1985, 2(4) 379–390 (in Russian, summary in English).

68. Vohla, C., Põldvere, E., Noorvee, A., Kuusemets, V., Mander, Ü. Alternative filter media for phosphorus removal in a horizontal subsurface flow constructed wetland. J. Environ. Sci. Heal. A., 2005, 40(6–7), 1251–1264.

69. Kaasik, A., Vohla, C., Mõtlep, R., Mander, Ü., Kirsimäe, K. Hydrated calcareous oil-shale ash as potential filter media for phosphorus removal in constructed wetlands. Water Res., 2008, 42(4–5), 1315–1323.

70. Veskimäe, H., Kuusik, R., Veiderma, M. Phosphorus removal from solutions by carbonaceous wastes. Proc. Estonian. Acad. Sci. Chem., 1997, 46(1/2), 21–30.


Back to Issue