eesti teaduste
akadeemia kirjastus
SINCE 1984
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2021): 1.442
PDF | doi: 10.3176/oil.2012.2.06


The influence of oil shale extraction in Narva opencast and combus­tion in Eesti and Balti power plants on the quality of surface waters and sediments of the Narva River left-bank tributaries was studied. Altogether, 22 sites were sampled for water and 21 for sediments.
   The concentrations of Cd, Pb, Cu and Cr in the surface water and sediment samples remained below the respective limit values for surface water and residential soils, respectively. Cd/Zn/Pb and Cr in the sediments were below the detection limits of the respective sensor bacteria (mg metal/kg sediment): <0.006 Cr3+; <0.05 Cr6+; <0.16 Zn2+; <0.11 Cd2+; <0.15 Pb2+. As-specific sensor bacteria showed bioavailable sub-toxic levels of As in two sediments (up to 0.26 mg As3+/kg or, alternatively, up to 0.1 mg As5+/kg). Comparative ecotoxicity analysis of the suspensions and aqueous extracts of sediments using Vibrio fischeri kinetic luminescence inhibition test (Flash Assay) showed particle-bound acute toxicity in suspensions of four sediment samples out of 20 analysed. However, there was no acute toxicity of the respective aqueous extracts of sediments in the Flash Assay. The obtained results show the importance of combining both chemical and biological methods for environmental monitoring.


  1. Kahru, A., Põllumaa, L. Environmental hazard of the waste streams of Estonian oil shale industry: an ecotoxicological review. Oil Shale, 2006, 23(1), 53–93.

  2. Raukas, A., Punning, J.-M. Environmental problems in the Estonian oil shale industry. Energy Environ. Sci., 2009, 2, 723–728.

  3. Perens, R., Punning, J.-M., Reinsalu, E. Water problems connected with oil shale mining in North-West Estonia. Oil Shale, 2006, 23(3), 228–235.

  4. Loigu, E., Reihan, A. Study of water balance of the Narva Reservoir. Report I. Contract for services 18-19/533. Tallinn: Tallinn University of Technology, Department of Environmental Engineering, 2008 (in Estonian). (http://

  5. Erg, K., Punning, J.-M. The influence of oil-shale mining on groundwater resources and quality. In Groundwater Quality Management Proceedings of the GQM 93 Conference Tallinn, Sept. 1993 (Kovar, K., Soveri, J., eds.), IAHS Publ. No. 220, 1994, 3–10.

  6. Kahru, A., Kurvet, M., Kurvet, I. Study of the toxicological impact of different components of ash-heap water (sulphur rich phenolic leachate) using lumine­scent bacteria as test organisms. Oil Shale, 1997, 14(4S), 469–475.

  7. Sizova, T., Sizov, E. Water management of the Narva region. In The Narva River and Reservoir (Jaani, A., ed.). Tartu: Center for Transboundary Coopera­tion, CTC, 2000, 14–19 (in Estonian and Russian, summary in English).

  8. Sorlie, J.-E., Bityukova, L., Saether, O.-M., Rudolph-Lund, K., Kahru, A., Vall­ner, L., Petersell, V., Razgonjajev, A., Põllumaa, L. Estonia, the oil shale industry. Risk based environmental site assessment of landfills. Report, Reg. No FS 32989, Oslo: NGI, 2004.

  9. Statistics Estonia. Statistical Database: Environment (

10. Perens, R., Savitski, L. Hydrogeological conditions and problems on the left bank catchment area of the Narva River. In The Narva River and Reservoir (Jaani, A., ed.). Tartu: Center for Transboundary Cooperation, CTC, 2000, 25–36 [in Estonian and Russian, summary in English].

11. Häsanen, E., Aunela-Tapola, L., Kinnunen, V., Larjava., K., Mehtonen, A., Salmi­kangas, T., Leskelä, J., Loosaar, J. Emission factors and annual emissions of bulk and trace elements from oil shale fueled power plants. Sci. Total Environ., 1997, 198, 1–12.

12. Kahru, A., Sihtmäe, M. The potential ecotoxicological effects of CO2-neutralised/carbonated oil shale combustion ashes. In Report: Technological, geological and toxicological evaluation of CO2 mineral sequestration. Tallinn, 2007, 3-1–3-35 (in Estonian, summary in English). ( class=file/action=preview/id=967272).

13. Liiv, S., Kaasik, M. Trace metals in mosses in the Estonian oil shale processing region. J. Atmos. Chem., 2004, 49, 563–578.

14. Pets, L. Depositions of macro- and microelements from atmospheric emission of oil shale ashes in Northeastern Estonia. Oil Shale, 1997, 14(2), 163–170.

15. Kaasik, M., Sõukand, Ü. Balance of alkaline and acidic pollution loads in the area affected by oil shale combustion. Oil Shale, 2000, 17(2), 113–128.

16. Liblik, V., Kaasik, M., Pensa, M., Rätsep, A., Rull, E., Tordik, A. Reduction of sulphur dioxide emissions and transboundary effects of oil shale based energy production. Oil Shale, 2006, 23(1), 29–38.

17. Kirso, U., Laja, M., Urb, G. Polycyclic aromatic hydrocarbons (PAH) in ash fractions of oil shale combustion: fluidized bed vers pulverized firing. Oil Shale, 2005, 22(4S), 537–545.

18. Laja, M., Urb, G., Irha, N., Reinik, J., Kirso, U. Leaching behavior of ash frac­tions from oil shale combustion by fluidized bed and pulverized firing processes. Oil Shale, 2005, 22(4S), 453–465.

19. Käkinen, A. The mobility and bioavailability of heavy metals in the oil shale combustion fly ashes of Narva power plants and surrounding topsoils. Master Dissertation. Faculty of Chemical and Materials Technology, Tallinn University of Technology, 2010 (in Estonian).

20. Lahtvee, V. Environmental problems related to hazardous substances in Narva power plants. In Hazardous substances in Estonian environment (Roose, A., Otsa, E., Roots, O., eds.). Estonian Ministry of the Environment, 2003, 94–98 (in Estonian).

21. Roots, O., Sweetman, A. Passive air sampling of persistent organic pollutants in two Estonian air monitoring stations. Oil Shale, 2007, 24(3), 483–494.

22. Huuskonen, S., Ristola, T., Tuvikene, A., Hahn, M., Kukkonen, J., Lindström-Seppä, P. Comparision of two bioassays, a fish liver cell line (PLHC-1) and a midge (Chironomus riparius), in monitoring freshwater sediments. Aquat. Toxicol., 1998. 44, 47–67.

23. Tuvikene, A., Huuskonen, S., Koponen, K., Ritola, O., Mauer, Ü., Lindström-Seppä, P. Oil shale processing as a source of aquatic pollution: monitoring of the biologic effects in caged and feral freshwater fish. Environ. Health Persp., 1999, 107(9), 745–752.

24. Roose, A., Roots., O. Monitoring of priority hazardous substances in Estonian water bodies and in the coastal Baltic Sea. Boreal Environ. Res., 2005, 10, 89–102.

25. Determination of priority hazardous substances for Estonian surface water bodies and formation of monitoring network (Roots, O., compiler). Estonian Environmental Research Centre. Agreement No 2005/K-11-1-2005/52, Tal­linn, 2006. ( HazSubstEstSurfWater.pdf).

26. Roots, O., Aps, R., Kuningas, K., Talvari, A. Monitoring of oil products and hazardous substances in Estonian surface water bodies. Proc. Estonian Acad. Sci. Chem., 2007, 56(2), 75–86.

27. ISO 21338:2010(E). Water quality – Kinetic determination of the inhibitory effects of sediment, other solids and coloured samples on the light emission of Vibrio fischeri (kinetic luminescent bacteria test).

28. Ivask, A., François, M., Kahru, A., Dubourguier, H. C., Virta, M., Douay, F. Recombinant luminescent bacterial sensors for the measurement of bio­availability of cadmium and lead in soils polluted by metal smelters. Chemo­sphere, 2004, 55, 147–156.

29. Kahru, A., Ivask, A., Kasemets, K., Põllumaa, L., Kurvet, I., François, M., Dubourguier, H. C. Biotests and biosensors in ecotoxicological risk assessment of field soils polluted with zinc, lead and cadmium. Environ. Toxicol. Chem., 2005, 24(11), 2973–2982.

30. Ivask, A., Dubourguier, H. C., Põllumaa, L., Kahru, A. Bioavailability of Cd in 110 polluted topsoils to recombinant bioluminescent sensor bacteria: effect of soil particulate matter. J. Soils Sediments., 2011, 11(2), 231–237.

31. Ivask, A., Rõlova, T., Kahru, A. A suite of recombinant luminescent bacterial strains for the quantification of bioavailable heavy metals and toxicity testing. BMC Biotechnol., 2009, 9(41), 1–15.

32. American Public Health Association. Standard methods for the examination of water and wastewater. Washington D. C., 1986.

33. Aruoja, V., Kurvet, I., Dubourguier, H. C., Kahru, A. Toxicity testing of heavy-metal-polluted soils with algae Selenastrum capricornutum: a soil suspension assay. Environ. Toxicol., 2004, 19(4), 396–402.

34. Lappalainen, J., Juvonen, R., Vaajasaari, K., Karp, M. A new flash method for measuring the toxicity of solid and colored samples. Chemosphere, 1999, 38(5), 1069–1083.

35. Põllumaa, L., Kahru, A. Eisenträger, A., Reiman, R., Maloveryan, A., Rätsep, A. Toxicological investigation of soils with the solid-phase flash assay: comparison with other ecotoxicological tests. ATLA, 2000, 28, 461–472.

36. Heinlaan, M., Kahru, A., Kasemets, K., Kurvet, I., Waterlot, C., Sepp, K., Dubourguier, H. C., Douay, F. Rapid screening for soil ecotoxicity with a battery of luminescent bacteria tests. ATLA, 2007, 35, 101–110.

37. Lappalainen, J., Juvonen, R., Nurmi, J., Karp, M. Automated color correction method for Vibrio fischeri toxicity test. Comparison of standard and kinetic assays. Chemosphere, 2001, 45, 635–641.

38. Persoone, G., Goyvaerts, M., Janssen, C., De Coen, W., Vangheluwe, M. Cost- effective acute hazard monitoring of polluted waters and waste dumps with the aid of Toxkits. Final Report. Commission of European Communities, Contract ACE 89/BE 2/D3, 1993.

39. Persoone, G., Marsalek, B., Blinova, I., Törökne, A., Zarina, D., Manusad­zianas, L., Nalecz-Jawecki, G., Tofan, L., Stepanova, N., Tothova, L., Kolar, B. A practical and user-friendly toxicity classification system with microbiotests for natural waters and wastewaters. Environ. Toxicol., 2003, 18, 395–402.

40. Hannus,  M., Leisk, Ü., Loigu, E. Hazardous substances in Estonian rivers. In Hazardous substances in Estonian environment (Roose, A., Otsa, E., Roots, O., eds.). Estonian Ministry of the Environment, 2003, 35–37 (in Estonian).

41. DIRECTIVE 2008/105/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amend­ing Directive 2000/60/EC of the European Parliament and of the Council Official Journal of the European Union L 348/84 24.12.2008 (http://eur-lex.

42. COUNCIL DIRECTIVE 98/83/EC of 3 November 1998 on the quality of water intended for human consumption L 330/32 EN Official Journal of the European Communities 5.12.98 ( OJ:L:1998:330:0032:0054:EN:PDF).

43. RT I 2010, 65, 484 Hazardous substances, including priority substances and priority hazardous substances and certain other pollutants’ environmental quality limit values in surface water; methods of application for environmental quality limit of priority substances and priority hazardous substances. Regula­tion No. 49 of Ministry of the Environment of 9 September 2010. (https:// (in Estonian).

44. RT I 2010, 57, 373 Maximum levels of concentration of hazardous substances in soil. Regulation No. 38 of Ministry of the Environment of 11 August 2010. ( (in Estonian).

45. Põllumaa, L., Maloveryan, A., Trapido, M., Sillak, H., Kahru, A. Study of the environmental hazard caused by the oil shale industry solid waste. ATLA, 2001, 29, 259–267.

46. Mortimer, M., Kasemets, K., Heinlaan, M., Kurvet, I., Kahru, A. High through­put kinetic Vibrio fischeri bioluminescence inhibition assay for study of toxic effects of nanoparticles. Vitro, 2008, 22, 1412–1417.

47. Ivask, A. Luminescent recombinant sensor bacteria for the analysis of bio­available heavy metals. PhD thesis. Tallinn University of Technology, 2006 (

Back to Issue